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a b s t r a c t

We extend the foundation of statistics to integrate rare events
that are potentially catastrophic, called black swans.These include
natural hazards, regime change in complex systems, market
crashes, catastrophic climate change and major episodes of
species extinction. Classic statistics and physics treat such events
as ‘outliers’ and often disregard them. We propose a new
axiomatization of subjective probability requiring equal treatment
for rare and frequent events, and characterize the likelihoods or
subjective probabilities that the axioms imply. These coincide with
countably additive measures and yield normal distributions when
the sample has no black swans. When the sample includes black
swans, the new likelihoods are represented by a combination of
countable and finitely additive measures with both parts present.
The axioms were introduced in Chichilnisky (2000, 2002); they
extend the axiomatic foundations of Savage (1954), Villegas (1964)
and Arrow (1971) and they are valid for bounded and unbounded
samples (Chichilnisky, 1996b). The finitely additive measures
assign more weight to rare events than do standard distributions
and in that sense explain the persistent observation of power laws
and ‘heavy tails’ that eludes classic theory.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Black swans are rare events with major consequences, such as market crashes, natural hazards,
globalwarming andmajor episodes of extinction. For such events onehas fewor noprior observations,
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challenging standard statistics. Statistical measurements that rely on standard observations discard
‘outliers’, underestimate the occurrence of rare events no matter how important these may be. To
correct this bias, the natural hazards literature uses power laws to predict such risks, without however
an axiomatic foundation.
This article provides a new axiomatic foundation for statistics requiring sensitivity to rare

and frequent events, and characterizes the likelihoods or subjective probability distributions that
these axioms imply. The new distributions coincide with standard distributions when the sample
is populated by frequent events. Generally they are a mixture of countable and finitely additive
measures, assigning more weight to black swans than do normal distributions, and predicting more
realistically the incidence of ‘outliers’, ‘power laws’ and ‘heavy tails.’
The new axioms incorporate and extend both Savage’s (1954) axiomatization based on finitely

additive measures, as well as Villegas’ (1964) and Arrow’s (1971) that are based on countable
measures. Savage (1954) axiomatized subjective expected utility with a finitely additive measure
representing the decision makers’ beliefs, an approach that can ignore frequent events as shown in
the Appendix. Villegas (1964) and Arrow (1971) introduced an extra continuity axiom (monotone
continuity) that yields countable additivity. However monotone continuity has unusual implications:
it predicts that in exchange for a couple of cents, one should be willing to accept a small risk of
death, a possibility that Kenneth Arrow called ‘outrageous’ (1971, P. 48 and 49). This article defines a
realistic solution: for some payoffs and in certain situations, one may be willing to accept a small risk
of death — but not for others. This means that monotone continuity holds in some cases but not in
others, a possibility that leads to the axiomatization proposed in this article and is consistent with the
experimental observations reported in Chanel and Chichilnisky (2009a,b). The results work as follows.
First we show that countably additive measures are insensitive to black swans: they assign negligible
weight to rare events, nomatter how important thesemay be, treating catastrophes as outliers, Chanel
and Chichilnisky (2009a,b). Finitely additive measures, on the other hand, may assign no weight to
frequent events, which is equally troubling. Our new axiomatization balances the two approaches and
extends both, requiring sensitivity to rare events as well as frequent events. We provide an existence
theorem for likelihoods that satisfy our axioms, and a characterization of all the likelihoods that do.
The results are based on an axiomatic approach to choice under uncertainty and sustainable

development introduced by the author Chichilnisky (2000, 2002), and illuminate the issue of
continuity that is at the core of ‘sufficient statistics’. Continuity depends on the topology that is
used to measure statistical proximity. Villegas and Arrow’s ‘monotone continuity’ is implicitly based
on a topology that neglects rare events. We use instead a topological approach that reflects recent
neurological findings about catastrophes and the special role of fear in perception Le Doux (1996)
and Chichilnisky (2000, 2002), yielding ‘extremal’ responses to extremal risks Accordingly, we define
‘nearby’ observations in a way that is sensitive both to extremal as well as average events. The
proximity notion used here has been called the ‘topology of fear’ (2009a) and is sharply sensitive
to extremal or catastrophic events even when these are infrequent. A similar topology was used by
Debreu (1953) in the initial formulation of Adam Smith’s Invisible Hand theorem. The new axioms
give rise to new types of distribution, a mix of ‘countably additive’ and ‘finitely additive’ measures,
with both parts present. Finitely additivemeasures were studied in Savage (1954), Dubins and Savage
(1965), Dubins (1975) and Purves and Sudderth (1976) among others. The newcombineddistributions
were introduced and studied in Chichilnisky (2000, 2002), Chichilnisky (1996a,b), Chichilnisky
(2009a,b, in press) and could play an important role in the measurement and management of risks
such as climate change, market crashes (Chichilnisky and Wu, 2006), extinction events, and the
statistics of change.

2. The mathematics of uncertainty

Uncertainty is described by a set of distinctive and exhaustive possible events that are represented
by a family of sets {Uα} whose union describes a universe U = ∪α Uα . An event U ∈ U can be
identified with its characteristic function φU : U→ Rwhere φU(x) = 1 when x ∈ U and φU(x) = 0
when x 6∈ U .
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The (relative) likelihood of an event measures how likely it is to occur; it is also called a subjective
probability (Anscombe and Aumann, 1963) and in this article we make no distinction between the
two concepts. Axioms for relative likelihoods are natural and self evident properties; classic axioms
can be found in De Groot (1970) Chapter 6.
It is generally assumed that the likelihood of two disjoint events is the sum of their likelihoods:

W (U1∪U2) = W (U1)+W (U2)whenU1∩U2 = ∅, and the likelihoodof the empty set is zeroW (∅) = 0.
These properties correspond to the definition of a finite additive measure on the measurable sets
of U, which is Savage’s (1954) definition of a subjective probability. Countable additivity means
W (∪h=1∞ Uh) =

∑
∞

h=1W (Uh) if ∀i, j,Ui ∩ Uj = ∅. A purely finitely additive likelihood is additive
but not countably additive. The following two axioms appear in Villegas (1964), Arrow (1971) and De
Groot (1970); their role is to yield countable additivity:

Monotone Continuity Axiom (MC) (Arrow (1971)). For every two events f and g withW (f ) > W (g),
and every vanishing sequence of events {Eα}=1,2... (i.e.∀α, Eα+1 ⊂ Eα and∩∞α=1 Eα = ∅) there exists N
such that altering arbitrarily the events f and g on the set E i, where i > N , does not alter the likelihood
ranking of the events, namelyW (f ′) > W (g ′), where f ′ and g ′ are the altered events.

This axiom is equivalent to requiring that the likelihood of sets along a vanishing sequence goes to
zero. The decreasing sequence could consist of infinite intervals of the form (n,∞) for n = 1, 2 . . . .
Monotone continuity therefore implies that the likelihood of this sequence of events goes to zero, even
though all its sets are unbounded. A similar example can be constructed with a decreasing sequence
of bounded sets, (−1/n, 1/n) for n = 1, 2 . . . ,which is also a vanishing sequence as it is a decreasing
and their intersection is empty.

De Groot’s Axiom SP4 (De Groot (1970), Chapter 6, p. 71). If A1 ⊃ A2 ⊃ · · · is a decreasing sequence of
events and B is some fixed event that is less likely than Ai for all i, then the intersection ∩∞i Ai is more
likely than B.

The following proposition establishes that these two axioms are one and the same; both imply
countable additivity:

Proposition 1. A relative likelihood satisfies the Monotone Continuity Axiom if and only if it
satisfies Axiom SP4. Each of the two axioms implies countable additivity.

Proof. Assume that De Groot’s axiom SP4 is satisfied. When the intersection of a decreasing sequence
of events is empty ∩i Ai = ∅ and the set B is less likely to occur than every set Ai, then the subset B
must be as likely as the empty set, namely its likelihood must be zero. In other words, if B is more
likely than the empty set, then regardless of how small is the set B, it is impossible for every set Ai to
be as likely as B. Equivalently, the likelihood of the sets that are far away in the vanishing sequence
must go to zero. Therefore SP4 implies Monotone Continuity. Reciprocally, assume MC is satisfied.
Consider a decreasing sequence of events Ai and define a new sequence by subtracting from each set
the intersection of the family, namely A1 − ∩∞i Ai, A2 − ∩

∞

i Ai, . . .. Let B be a set that is more likely
than the empty set but less likely than every Ai. Observe that the intersection of the new sequence is
empty,∩i Ai−∩∞i Ai = ∅ and since Ai ⊃ Ai+1 the new sequence is, by definition, a vanishing sequence.
Therefore by MC limiW (Ai −∩∞i Ai) = 0. SinceW (B) > 0, Bmust be more likely than Ai −∩

∞

i Ai for
some i onwards. Furthermore, Ai = (Ai − ∩∞i Ai) ∪ (∩

∞

i Ai) and (Ai − ∩
∞

i Ai) ∩ (∩
∞

i Ai) = ∅, so that
W (Ai) > W (B) is equivalent toW (Ai−∩∞i Ai)+W (∩

∞

i Ai) > W (B).Observe thatW (∩
∞

i Ai) < W (B)
would contradict the inequality W (Ai) = W (Ai − ∩∞i Ai) + W (∩

∞

i Ai) > W (B), since as we saw
above, by MC, limiW (Ai − ∩∞i Ai) = 0, and W (Ai − ∩

∞

i Ai) + W (∩
∞

i Ai) > W (B). It follows that
W (∩∞i Ai) > W (B), which establishes De Groots’s Axiom SP4. Therefore Monotone Continuity is
equivalent to De Groot’s Axiom SP4. A proof that each of the axioms implies countable additivity is
in Villegas (1964), Arrow (1971) and De Groot (1970). �

The Section 3 shows that the two axioms, monotone continuity and SP4 are biased against rare
events no matter how important these may be.
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3. The value of life

The best way to explain the role of monotone continuity is by means of an example provided by
Arrow (1971), p. 48 and 49. He explains that if a is an action that involves receiving one cent, b is
another that involves receiving zero cents, and c is a third action involving receiving one cent and
facing a small probability of death, thenMonotone Continuity requires that the third action involving
death and one cent should be preferred to the action with zero cents if the probability of death is
small enough. Even Kenneth Arrow says of his requirement ‘this may sound outrageous at first blush
. . . ’ Arrow (1971) p. 48 and 49. Outrageous or not, Monotone Continuity (MC) leads to neglect rare
events with major consequences, like death. Death is a black swan.
To overcome the bias we introduce an axiom that is the logical negation of MC: this means that

sometimes MC holds and others it does not. We call this the Swan Axiom, and it is stated formally
below. To illustrate how thisworks. consider an experiment (Chanel and Chichilnisky, 2009a,b) where
the subjects are offered a certain amount of money to choose a pill at random from a pile, which is
known to contain one pill that causes death. In some cases people accept a sum of money and choose
a pill provided the pile is large enough – namely when the probability of death is small enough – thus
satisfying the monotone continuity axiom and in the process determining a statistical value of their
lives. But there are also caseswhere the subjectswill not accept to choose any pill, nomatter how large
is the pile. They refuse the payment if it involves a small probability of death, nomatter how small the
probability may be (Chanel and Chichilnisky, 2009a,b). This conflicts with the Monotone Continuity
axiom, as explicitly presented by Arrow (1971). Our Axiom provides a reasonable resolution to this
dilemma that is realistic and consistent with the experimental evidence. It implies that there exist
catastrophic outcomes such as the risk of death, so terrible that one is unwilling to face a small
probability of death to obtain one cent versus half a cent, no matter how small the probability may
be. According to our Axiom, no probability of death may be acceptable when one cent and half a cent
are involved. Our Axiom also implies that in other cases there may be a small enough probability that
the lottery involving death may be acceptable. For example, if instead of one cent and half a cent one
considers one billion dollars and half a cent — as Arrow (1971) suggests in p. 48 and 49: then under
certain conditions onemay bewilling to take the lottery that involves a small probability of death and
one billion dollars over the one that offers half a cent. In another example, a person who has a short
term to live – for example an incurable cancer –may be inclined to choose a pill if the payment and the
size of the pile are large enough. This seems a reasonable solution to the dilemma that Arrow raises.
Sometimes one is willing to take a risk with a small enough probability of a catastrophe, in other cases
one is not. This is the content of our Axiom, which is formally stated below:
The Swan Axiom: There exist events f and g withW (f ) > W (g), and for every vanishing sequence

of events {Eα}=1,2... an N > 0 such that altering arbitrarily the events f and g on the set E i, where
i > N , does not alter the likelihood ranking of the events, namelyW (f ′) > W (g ′), where f ′ and g ′ are
the altered events. Observe that for other events f and g with W (f ) > W (g), there exist vanishing
sequence of events {Eα}=1,2... where for every N , altering arbitrarily the events f and g on the set E i,
where i > N , does alter the likelihood ranking of the events, namelyW (f ′) < W (g ′), where f ′ and g ′
are the altered events.

Definition: A likelihoodW is said to be biased against rare events or insensitive to rare events
when it neglects events that are small according to Villegas and Arrow. Formally, a likelihood is
insensitive to rare events when given two events f and g and any vanishing sequence of events
(Ej), ∃N = N(f , g) > 0, such that W (f ) > W (g) ⇔ W (f ′) > W (g ′)∀f ′, g ′ satisfying f ′ = f and
g ′ = g a.e. on Ecj ⊂ Rwhen j > N , where E

c denotes the complement of the set E.

Proposition 2. A likelihood satisfies Monotone Continuity if and only if it is biased against rare events.

Proof. This is immediate from the definitions of both. �

Corollary 1. Countably additive likelihoods are biased against rare events.

Proof. It follows from Propositions 1 and 2. �

Please cite this article in press as: Chichilnisky, G., The foundations of statistics with black swans. Mathematical Social
Sciences (2009), doi:10.1016/j.mathsocsci.2009.09.007



ARTICLE  IN  PRESS
G. Chichilnisky / Mathematical Social Sciences ( ) – 5

Proposition 3. Purely finitely additive likelihoods can be biased against frequent events.

Proof. See example in the Appendix. �

Proposition 4. A likelihood that satisfies the Swan Axiom is neither biased against rare events, nor biased
against frequent events.

Proof. This is immediate from the definition. �

4. An axiomatic approach to unbiased statistics

This section proposes an axiomatic foundation for statistics that is unbiased against rare and
frequent events. The axioms are as follows:

Axiom 1: Likelihoods are continuous and additive.
Axiom 2: Likelihoods are unbiased against rare events.
Axiom 3: Likelihoods are unbiased against frequent events.
Axioms 2 and 3 together are equivalent to the Swan Axiom defined in the previous section, which

is required to avoid bias against rare and frequent events as shown in Section 3. Additivity is a natural
condition and continuity of the likelihood captures the notion that ‘nearby’ events are similarly likely
to occur; this property is important to ensure that ‘sufficient statistics’ exist. ‘Nearby’ has been defined
by Villegas (1964) and Arrow (1971) as follows: two events are close or nearbywhen they differ on a
small set.As stated in Arrow (1971) p. 48: ‘‘An event that is far out on a vanishing sequence is ‘small’ by
any reasonable standards’’ Arrow (1971) p. 48. We saw in Proposition 2 that the notion of continuity
defined by Villegas and Arrow– namelymonotone continuity – conflictswith the SwanAxiom. Indeed
Proposition 2 shows that countably additive measures are biased against rare events. On the other
hand, Proposition 3 and the Example in the Appendix show that purely finitely additive measures can
be biased against frequent events. A natural question iswhether after one eliminates both biases there
is anything left. The following proposition addresses this issue:

Theorem 1. A likelihood that satisfies the Swan Axiom is neither finitely additive nor countably additive;
it is a strict convex combination of both.

Proof. The result is immediate. The next Section develops the proofs and provides examples when
the events are Borel sets in R or an interval (a, b). �

Theorem 1 establishes that neither Savage’s approach, nor Villegas’ and Arrow’s, satisfy the three
axioms stated above. The three axioms above require more than the additive likelihoods of Savage,
since purely finitely additive likelihoods are finitely additive and yet they must be excluded here;
at the same time the axioms require less than the countably additivity of Villegas and Arrow, since
countably additive likelihoods are biased against rare events. Theorem 1 above shows that a strict
combination of both does the job.
Theorem 1 does not however prove the existence of likelihoods that satisfy all three axioms. What

is missing is an appropriate definition of continuity that does not conflict with the Swan Axiom.
The following Section shows that this can be achieved by identifying an event with its characteristic
function, so that events are contained in the space of bounded real valued functions on the universe
spaceU, L∞(U), and endowing this space with the sup norm. In this case the likelihoodW : L∞(U)
→ R is taken to be continuous with respect to the sup norm.

5. Axiomatic statistics on R or (a, b)

From now on events events are taken to be the Borel sets of the real line R or the interval (a, b), a
widely used case thatmakes the results concrete.We use a concept of ‘continuity’ based on a topology
that was used earlier in Debreu (1953) and in Chichilnisky (2000, 2002, 2009a,b): observable events
are in the space of measurable and essentially bounded functions L = L∞(R) with the sup norm
‖f ‖ = ess supx∈R |f (x) |. This is a sharper andmore stringent definition of closeness than the one used

Please cite this article in press as: Chichilnisky, G., The foundations of statistics with black swans. Mathematical Social
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by Villegas and Arrow, since an event can be small under the Villegas–Arrow definition but not under
ours, see the Appendix. The difference as shown below determines sensitivity to rare events.
A likelihood that satisfies the classic axioms in De Groot (1970) is called a standard likelihood. A

classic result is that for any event f ∈ L∞ a standard likelihood has the formW (f ) =
∫
R f (x).φ(x)dµ,

where φ ∈ L1(R) is an integrable ‘density’ function on R.
The next step is to introduce the new axioms, show the existence of likelihoods that satisfy them

and characterize all the likelihoods that satisfy the axioms. We need more definitions. A likelihood
W : L∞ → R is called biased against rare events, or insensitive to rare events when it neglects
events that are small according to a probability measure µ on R that is absolutely continuous with
respect to the Lebesgue measure. Formally, a likelihood is insensitive to rare events when given two
events f and g ∃ε = ε(f , g) > 0, such thatW (f ) > W (g)⇔ W (f ′) > W (g ′)∀f ′, g ′ satisfying f ′ = f
and g ′ = g a.e. on A ⊂ R and µ(Ac) < ε. Here Ac denotes the complement of the set A. A likelihood
W : L→ R is said to be insensitive to frequent eventswhen given any two events f , g∃ε(f , g) > 0
that W (f ) > W (g) ⇔ W (f ′) > W (g ′) ∀f ′, g ′ satisfying f ′ = f and g ′ = g a.e. on A ⊂ R and
µ(Ac) > 1− ε. W is called sensitiveto rare (or frequent) events when it is not insensitive to rare (or
frequent) events.
The following three axioms are identical to the axioms in last section, specialized to the case at

hand:
Axiom 1:W : L∞ → R is linear and continuous.
Axiom 2:W : L∞ → R is sensitive to frequent events.
Axiom 3:W : L∞ → R is sensitive to rare events.
The first and the second axiom agreewith classic theory and standard likelihoods satisfy them. The

third axiom is new.

Lemma 1. A standard likelihood function satisfies Axioms 1 and 2 , but it is biased against rare events and
therefore does not satisfy Axiom 3.

Proof. Consider a standard likelihoodW (f ) =
∫
R f (x)φ(x)dx,

∫
R φ(x)dx = K <∞. Then

W (f )+W (g) =
∫
R
f (x)φ(x)dx+

∫
R
g(x)φ(x)dx =

∫
R
f (x)+ g(x).φ(x)dx = W (f + g),

and thereforeW is linear. A standard likelihood is continuous with respect to the L1 norm ‖ f ‖1 =∫
R | f (x) | φ(x)dµ (19) because ‖ f ‖∞ < ε implies

W (f ) =
∫
R
f (x).φ(x)dx ≤

∫
R
| f (x) | .φ(x)dx ≤ ε

∫
φ(x)dx = εK .

Since the sup norm is finer than the L1 norm, continuity in L1 implies continuity with respect to the
sup norm Dunford and Schwartz (1958). Thus a standard likelihood satisfies Axiom 1. It is obvious
that for every two events f , g , withW (f ) > W (g), the inequality is reversed namelyW (g ′) > W (f ′)
when f ′ and g ′ are appropriate variations of f and g that differ from f and g on sets of sufficiently
large Lebesgue measure. Therefore Axiom 2 is satisfied. A standard relative likelihood is however not
sensitive to rare events, as shown in Chichilnisky (2000, 2002), Chichilnisky (1996b), Chichilnisky
(2009a,b). �

6. Existence and representation

Theorem 2. There exists a relative likelihood W : L∞ → R satisfying Axioms 1, 2, and 3. A likelihood
satisfies Axioms 1, 2, and 3 if and only if there exist two continuous linear functions on L∞, denoted φ1 and
φ2 and a real number λ, 0 < λ < 1, such that for any observable event f ∈ L∞

W (f ) = λ
∫
xεR
f (x)φ1(x)dx+ (1− λ)φ2(f ) (1)

whereφ1 ∈ L1(R, µ) defines a countably additivemeasure on R andφ2 is a purely finitely additivemeasure.
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Proof. This result follows from the representation theorem in Chichilnisky (2000, 2002). �

Example 1 (‘Heavy’ Tails). The following illustrates the additional weight that the new axioms assign
to rare events; in this example in the form of ‘heavy tails’. The finitely additive measure φ2 appearing
in the second term in (1) can be illustrated as follows. On the subspace of eventswith limiting values at
infinity, L′

∞
= {f εL∞ : limx→∞ f (x) <∞}, define φ2(f ) = limx→∞ f (x) and extend this to a function

on all of L∞ using Hahn Banach’s theorem. The difference between a standard likelihood and the like-
lihood defined in (1) is the second term φ2, which focuses all the weight at infinity. This can be inter-
preted as a ‘heavy tail’ namely a part of the distribution that is not part of the standard density function
φ1 and gives more weight to the sets that contain terminal events namely sets of the form (x,∞). �

Corollary 2. Absent rare events, a likelihood that satisfies Axioms 1, 2, and 3 is consistent with classic
statistical axioms and yields a standard likelihood.

Proof. Axiom3 is an empty requirementwhen there are no rare eventswhile, as shownabove, Axioms
1 and 2 are consistent with standard relative likelihood. �

7. The axiom of choice

There is a connection between the axioms presented here and the Axiom of Choice in the
foundation ofmathematics (Godel, 1940),which postulates that there exists a universal and consistent
fashion to select an element from every set. The best way to describe the situation is by means of an
example, see alsoDunford and Schwartz (1958), Yosida andHewitt (1952), Yosida (1974), Chichilnisky
and Heal (1997) and Kadane and O’Hagan (1995).

Example 2 (Representing a Purely Finitely Additive Measure). Define a measure ρ as follows: for every
Borel measurable set A ⊂ R, ρ(A) = 1 if A ⊃ {x : x > a, for some a ∈ R}, and otherwise ρ(A)
= 0. Then ρ is not countably additive, because the family of countably many disjoint sets {Vi}i=0,1,...
defined as Vi = (i, i + 1]

⋃
(−i − 1,−i], satisfy Vi

⋂
Vi = ∅ when i 6= j, and

⋃
∞

i=0 Vi =
⋃
∞

i=0(i, i +
1]

⋃
(−i − 1,−i] = R, so that ρ(

⋃
∞

i=0 Vi) = 1,while
∑
∞

i=0 ρ(Vi) = 0, which contradicts countable
additivity. Since the contradiction arises from assuming that ρ is countably additive, ρmust be purely
finitely additive. Observe that ρ assigns zeromeasure to any bounded set, and a positivemeasure only
to unbounded sets that contain a ‘terminal set’ of the form

{xεR : x > a for some aεR}.

One can define a function on L∞ that represents this purely finitely additive measure ρ if we restrict
our attention to the closed subspace L′

∞
of L∞ consisting of those functions f (x) in L∞ that have a

limit when x→∞, by the formula ρ(f ) = limx→∞ f (x), as in Example 1 of the previous section. The
measure ρ(.) can be seen as a limit of a sequence of delta functions whose support increases without
bound. The problem is now to extend the function ρ to another defined on the entire space L∞. This
could be achieved in various ways but as we will see, each of them requires the Axiom of Choice.

One can use Hahn–Banach’s theorem (Dunford and Schwartz, 1958) to extend the function ρ from
the closed subspace L′

∞
⊂ L∞ to the entire space L∞ preserving its norm. However, in its general form

Hahn–Banach’s theorem requires the Axiom of Choice (Dunford and Schwartz, 1958). Alternatively,
one can extend the notion of a limit to encompass all functions in L∞ including thosewith no standard
limit. This can be achieved by using the notion of convergence along a free ultrafilter arising from
compactifying the real line R as in Chichilnisky and Heal (1997). However the existence of a free
ultrafilter also requires the Axiom of Choice.
This illustrates why the attempts to construct purely finitely additive measures that are

representable as functions on L∞, require the Axiom of Choice. Since our criteria require purely
finitely additivemeasures, this provides a connection between the Axiomof Choice and our axioms for
relative likelihood. It is somewhat surprising that the consideration of rare events that are neglected
in standard statistical theory conjures up the Axiom of Choice, which is independent from the rest of
mathematics (Godel, 1940).

Please cite this article in press as: Chichilnisky, G., The foundations of statistics with black swans. Mathematical Social
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Appendix

Example 3 (A Likelihood that is Biased Against Frequent Events). ConsiderW (f ) = lim infxεR(f (x)). This
is insensitive to frequent events of arbitrarily large Lebesgue measure (Dunford and Schwartz, 1958)
and therefore does not satisfy Axiom 2. In addition it is not linear, failing Axiom 1.

Example 4 (Two Approaches to ‘Closeness’). Consider the family {E i} where E i = [i,∞), i = 1, 2, . . ..
This is a vanishing family because ∀i E i ⊃ E i+1 and

⋂
∞

i=1 E
i
= ∅. Consider now the events f i(t) = K

when t ∈ E i and f i(t) = 0 otherwise, and g i(t) = 2K when t ∈ E i and g i(t) = 0 otherwise. Then for
all i, supEi |f i(t) − g i(t)| = K . In the sup norm topology this implies that f i and g i are not ‘close’ to
each other, as the difference f i − g i does not converge to zero. No matter how far along we are along
the vanishing sequence E i the two events f i, g i differ by K . Yet since the events f i, g i differ from f ≡ 0
and g ≡ 0 respectively only in the set E i, and {E i} is a vanishing sequence, for large enough i they are
as ‘close’ as desired according to Villegas–Arrow’s definition of ‘nearby’ events.

The dual space L∗
∞
: countably additive and finitely additive measures

The space of continuous linear functions on L∞ is the ‘dual’ of L∞, and is denoted L∗∞. It has been
characterized e.g. in Yosida andHewitt (1952), Yosida (1974). L∗

∞
consists of the sum of two subspaces

(i) L1 functions g that define countably additive measures ν on R by the rule ν(A) =
∫
A g(x)dxwhere∫

R |g(x)|dx < ∞ so that υ is absolutely continuouswith respect to the Lebesgue measure, and (ii) a
subspace consisting of purely finitely additive measures. A countable measure can be identified with
an L1 function, called its ‘density’, but purely finitely additive measures cannot be identified by such
functions.

Example 5. A Finitely Additive Measure that is not Countably Additive.

See Example 2 in Section 7.
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