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Catastrophical risk

Global environmental risks such as climate change
and rising sea levels are low-probability events with
widespread and possibly irreversible consequences.
These are fundamentally new risks which are not well
understood. Learning through experimentation is out
of the question because these risks are effectively irre-
versible in a time-scale that matters. As a result, clas-
sical theories that rely on expected utility (see Utility
theory) may not work well because they underestimate
low-probability events, as discussed below. The need
to make global environmental decisions calls for a sys-
tematic analysis of choices involving low-probability
events with major irreversible consequences. The topic
is of current importance but has been neglected in the
literature of choice under uncertainty.

This entry introduces a new decision-making tool
for such situations. First, it shows why the classical
Von Neumann axioms do not work well in this con-
text, as they lead to expected utility that can be insen-
sitive towards small-probability events. Secondly, the
entry introduces and develops a new set of axioms
that require sensitivity to both small- and large-
probability events. These axioms appear to represent
ways in which people rationalize the problem of
making decisions in situations involving catastroph-
ical risks. The axioms are different from the classic
axioms by Von Neumann and Morgenstern, and they
lead to a different decision theory which is not based
on expected utility analysis. Finally, through a rep-
resentation theorem, it is shown that all the criteria
implied by the new axioms have the following form:
one term that takes into account the maximization
of expected utility, plus a second term which is a
well-defined operator that can be interpreted as a
desire to avoid a catastrophe. Both parts are present,
and both turn out to be important in making deci-
sions under catastrophical risks. This entry provides
practical examples of how to use these criteria. It
shows how the new axioms help to explain the Allais
paradox (see below), which involves choices with
low-probability events, and suggests new questions
on game theory and on the calculus of variations.

Von Neumann–Morgenstern Axioms

A set of mathematical axioms introduced half a
century ago by John Von Neumann and Oscar

Morgenstern gave rise to a now classical tool for
decision making under uncertainty. Several other
mathematicians and economists, such as Hernstein,
Milnor and Arrow, developed related axioms [7]. The
axioms formalize the properties of orders defined on
sets of uncertain events; the orders are then used
to rank or evaluate risky outcomes. The structure
of the decision problem is simple. A system with
uncertain characteristics is in one of several possible
states; each state is the value of a random variable
which describes the system. For example: the average
temperature of the planet’s surface is a state. The
system’s states can be described by real numbers.
For each states 2 R there is an associated outcome;
for example, for each temperature level there is
an associated vector describing soil fertility and
precipitation. Therefore one hasx�s� 2 RN, N ½ 1.
When the probabilities associated with each state are
given, a description of outcomes across all states is
called a lottery. (A lottery is also described by the
probabilities of each state and the outcomes in each
state.) A lottery is therefore a functionx : R ! RN,
and the space of all lotteries is a function spaceL.

The Von Neumann–Morgenstern (NM) axioms
provide a mathematical formalization of how to rank
or order lotteries, i.e. of reasonable ways to order
the elements ofL. The NM model presumes that the
outcomes themselves are ranked; it creates a utility
index for the outcomes that is consistent with this
ranking and a decision criterion for choice among
lotteries. In this sense the NM model does two jobs
at once.Optimization according to such an order
defines a form of decision making under uncertainty
used widely until now.

A main result obtained from the NM axioms is
a representation theorem: a characterization of all
the functionals onL which satisfy the NM axioms.
Maximizing such a functionalW : L ! R over a con-
strained set given by initial conditions defines a
form of rational choice under uncertainty. Von Neu-
mann and Morgenstern proved that an order over
lotteries which satisfies their axioms admits a rep-
resentation by an integral operatorW : L ! R, which
has as a kernel a countably additive measure over
the set of states. Such operators are called Von
Neumann–Morgenstern utilities, and the decision
procedure obtained by optimizing such utilities is
called expected utility maximization, so that

W�x� D
∫

s2R
u�x�s�� d
�s� �1�
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where the real lineR is the state–space; the function
x : R ! RN is a lottery;u : RN ! R is a utility func-
tion describing the utility provided by the outcome
of the lottery in each states, u�s�; and d
�x� is a
countably additive measure that defines a probability
distribution over measurable subsets of states inR. It
is standard practice to require that the utility function
is bounded to avoid the St Petersburg paradox [2,
Chapter 3]. The assumption ofbounded utility is suf-
ficient but not necessary to avoid the St Petersburg
paradox. As Bernoulli pointed out, the logarithmic
utility function u�x� D log�x� would deliver a finite
expected utility in the context of the St Petersburg
paradox. However, we needp�s�u�x�s�� to converge
to zero ass ! 1 for the integral to exist. According
to the NM representation theorem, a rational choice
under uncertainty which satisfies the NM axioms
must take the following form: a lotteryx is ranked
above anothery if and only if W assigns tox a larger
real number. In symbols

x � y , W�x� > W�y�

whereW satisfies (1).
The optimization of expected utility is a widely

used procedure for evaluating choices under uncer-
tainty. Mathematically, functionals such asW are
convenient because they are amenable to a large
body of knowledge which goes back several cen-
turies: the calculus of variations. The Euler–Lagrange
equations are typically used to characterize optimal
solutions. Such mathematical tools are widely used
and are valuable to find and describe choices under
uncertainty.

Catastrophical Risks

A catastrophical risk is a low-probability event which
can lead to major and typically irreversible losses. As
already mentioned, global environmental problems
have these characteristics (see Global environmen-
tal change). The classical methods defined above,
despite their widespread use, are not satisfactory to
evaluate catastrophical risks. The reasons are both
practical and theoretical. From the practical point of
view, it has been shown that using such criteria under-
values catastrophical risks and hence conflicts with
the observed evidence of how humans evaluate such
risks. For example using NM utilities, the most dam-
aging scenarios ofglobal warming induce little if

any economic loss. The Intergovernmental Panel on
Climate Change (IPCC), the main international sci-
entific organization in this area, recently announced a
highly contested figure of about 2% loss of economic
value from a doubling of CO2 concentration in the
atmosphere. This is a symptom of a more general phe-
nomenon; a simple computation shows that the hypo-
thetical disappearance of all irrigation water in the US
and all the country’s agricultural produce would have
at most a 2.5% impact on its gross domestic prod-
uct. This finding underscores the importance of using
appropriate criteria to evaluate catastrophical risks.

Mathematically the problem arises from the fact
that the expected utility operatorW which emerges
from the NM representation theorem (1) is defined
with respect to a probability measure
, which is
therefore countably additive. Since the utility function
u : RN ! R is bounded (i.e. supx2R ju�x�j < 1�, the
countable additivity of
 can be shown to imply that
any two lotteriesx, y 2 L are ranked byW quite
independently of the utility of the outcome in states
whose probabilities are lower than some threshold
level ε > 0, whereε depends onx and y. To show
this formally, introduce the following definition.

Definition 1 A functional W : L ! R is said to be
insensitive to small probability events when

W�x� > W�y� , 9ε > 0

W�x0� > W�y0�
�2�

for all x0, y0 such that

x0 D x and y0 D y, a.e. on any set

A : Ac ² R : 
�A� < ε

The interpretation of this definition is thatW ranks
x above y if and only if it ranks x0 above y0 for
any pair of lotteriesx0 andy0 which are obtained by
modifying arbitrarilyx andy in sets of states within
a setA with probability lower thanε. Under these
conditions one says that the ranking defined byW
is insensitive to the outcomes of the lottery in small
probability events. The following lemma shows that,
as defined by NM, the expected utility criterionW
is not well-suited to evaluate catastrophical risks. For
simplicity of notation, and without loss of generality,
let N D 1; the same results hold for arbitraryN.

Lemma Expected utility is insensitive to catastroph-
ical risks.
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Proof The expected utility criterion ranks lotteries
in L as follows: x�s� � y�s� , 9 a measurable and
bounded utility functionu : R ! R, and a probability
measure
 on R:∫

R
u�x�s�� d
�s� �

∫
R

u�y�s�� d
�s�

Now∫
R

u�x�s�� d
�s� �
∫

R
u�y�s�� d
�s� , 9υ > 0

∫
R

u�x�s�� d
�s� �
∫

R
u�y�s�� d
�s� C υ

Let

ε D ε�x, y� D υ

6K
�3�

where
K D sup

x2L,s2R
ju�x�s��j �4�

If

x0 D x and y0 D y, a.e. onSc �5�

where
�S� < ε, then∣∣∣∣
∫

R
u�x�s�� d
�s� 


∫
R

u�x0�s�� d
�s�

∣∣∣∣
< 2K
�S� <

υ

3

and ∣∣∣∣
∫

R
u�y�s�� d
�s� 


∫
R

u�y0�s�� d
�s�

∣∣∣∣
< 2K
�S� <

υ

3

Therefore

x � y )
∫

R
u�x0�s�� d
�s� >

∫
R

u�y0�s�� d
�s�

) x0 � y0

Reciprocally
x0 � y0 ) x � y

So that forε D υ/6K

x � y , 9ε > 0 :x0 � y0 when x D x0

and y D y0 a.e. on anyS : 
�Sc� < ε

and therefore by definition the expected utility cri-
terion is insensitive to small probability events.

By the result just established, cost–benefit anal-
ysis under uncertainty based on expected utility
maximization underestimates the outcomes of small-
probability events. It is thus biased against certain
environmental projects that are designed to prevent
catastrophical events. Experimental evidence shows
that humans treat choices under uncertainty some-
what differently from what the NM axioms would
predict (see Risk perception), and it raises questions
about the need for alternative axioms which describe
more accurately human beings’ valuations.

Updating NM

Recently a new set of axioms has been developed
which update the NM axioms to correct the bias
mentioned against small-probability events. A well-
defined set of axioms which contrast with the NM
axioms was introduced in [4], along with the atten-
dant representation theorems, identifying new types
of functionals which are maximized under uncer-
tainty. These axioms parallel similar axioms and cri-
teria for choice over time introduced in [5] and [6].
(See also [8] for an alternative analysis to the NM
treatment of decision making under uncertainty that
does not provide an axiomatic treatment.)

New Axioms for Choice Under Uncertainty

We propose three axioms for choice under uncer-
tainty, which must be satisfied by the criterion
W : L ! R that is used to evaluate lotteries. The first
axiom is satisfied by the expected utility; the other
two are not. The first axiom involves linearity and
continuity of the criterion with respect to the util-
ity derived from lotteries, where continuity is defined
with respect to the sup norm on the space of utility
values associated with lotteriesL. Formally, the util-
ity values of lotteriesL are in the space of measurable
and essentially bounded functions onR, with the
norm jju�x�s��jj D supx2L,s2R ju�x�s��j.

Axiom 1: Continuity of the functionalW with
respect to its argument, the utility of the lotteryu�x�.

Axiom 2: Sensitivity to low-probability events.
This rules out insensitivity to low-probability events
as in the above definition and lemma.



4 Catastrophical risk

Axiom 3: Sensitivity to large-probability events.
This rules out insensitivity to events of large proba-
bility, as defined below.

Definition 2 A ranking is said to be insensitive
to large-probability events when8x, y 9ε > 0, ε�x, y�
such that

W�x� > W�y� , W�x0� ½ W�y0� �6�

for all lotteriesx0, y0 such thatx D x0, y D y0, a.e. on
Sc, where
�S� > 1 
 ε. In words: the ranking is the
same on any two lotteriesx0 andy0 that are obtained
by modifying arbitrarilyx andy in any bounded set
of statesS ² R, which may have an arbitrarily large
probability.

Example 1 As an example of a function which is
insensitive to large-probability events, consider the
space of all continuous linear real-valued functions
on L1, the dual ofL1, denotedLŁ1. Within this
dual consider a purely finitely additive measure� on
R which assigns measure zero to any bounded set in
R, i.e. ��S� D 0 if 8x 2 S, jxj < K, for someK > 0.
Such measures define functionals satisfying (6). Such
functionals are ruled out by Axiom 3, which requires
sensitivity to large-probability events. Indeed, such
functionals put all the weight on infinity, i.e. on
events of arbitrarily small probabilities according to
the countably additive measure
 on R.

A Representation Theorem

Like the NM axioms, the three new axioms presented
above lead to a representation theorem establishing
the form of every ranking of lotteries that satisfies
the three axioms given above. It has been shown [4]
that there exist functionals : L1 ! R which rank
all lotteries and satisfy all the axioms. Rather than
countably additive kernels, however, these function-
als are a convex combination of integral operators
with countably additive kernels and purely finitely
additive measures, with both elements (countably and
finitely additive) nonzero.

Theorem Any ranking � of lotteries in L D L1�R�
satisfying the three axioms defined above must be of
the form

x � y , W�x� > W�y�

where W : L ! R

W�x� D �

[∫
R

u[x�s�] d
�s�

]

C �1 
 ��[u�x�s��] �7�

for � 2 �0, 1�, u : R ! R, 
 a probability measure on
R, and  : L ! R,  2 LŁ 
 L1 is a purely finitely
additive measure.

Proof The proof follows the line of argument pre-
sented in [5] and [6]. As defined above, the space of
all utility functions derived from lotteries isL1�R�
with the sup norm. By Axiom 1, we are looking for
an element of the dual spaceLŁ1�R�, the space of
all continuous linear real-valued functions onL1�R�.
By standard results in functional analysis, the dual
spaceLŁ1�R� consists ofL1�R� as well as another
space consisting of purely finitely additive measures,
namely continuous linear functions that assign the
value zero to any function supported on a bounded
set of R. By Axiom 2, the functionW is not con-
tained inL1, since in that case as shown in the above
lemma, Axiom 2 is violated. Axiom 3 implies that
W is not a purely finitely additive measure either;
as shown in [5] and [6] the only possible form is as
represented above.

Remark The connection between the functionW�x�
and the Prospect theory of Kahneman and Tversky is
the subject of another entry.

Example 2 As an illustration of the representation
theorem presented above, consider the case when the
states are discrete, indexed by the integersZ. For
each real number
, 0 < 
 < 1, a continuous linear
functional : l1 ! R can be defined as follows:

�x� D 

1∑

sD1

�
su�x�s�� C �1 
 
� lim
s2Z

u�x�s�� �8�

where lims2Z u�x�s�� is the (Hahn–Banach) extension
of the continuous linear limit operator to the spacel1
of all bounded real-valued functions onZ. The inter-
pretation of the two parts of the function in (4) is
simple. The first part is an integral operator with an
integrable kernelf�
sgs2Z which defines a countably
additive measure onZ, and therefore emphasizes the
weight of large-probability events in the ranking of
a lottery x 2 l1. The second part defines a purely
finitely additive measure onZ which assigns posi-
tive weight to small-probability events. It defines a
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measure with ‘heavy tails’. Both parts are present, so
 is sensitive to small- and large-probability events.
Catastrophical risks are therefore ranked more realis-
tically by such functionals. The mathematics involved
in these representation results is nonlinear analysis, as
well as the analysis of convex systems.

Examples and Open Questions

Examples

Consider an electrical utility company that seeks.
They seek to implement a production and service plan
which would be optimal under normal conditions,
while at the same time avoiding a potentially catas-
trophical black-out incident (which could be costly in
monetary terms and in human lives). Following our
axioms and the above theorem, a typical criterion that
would be adopted would involve choosing among all
possible plans to maximize the expected throughput
plus minimizing the probability of reaching a critical
level beyond which there would be a black-out. It
can be shown that such a criterion would satisfy our
three axioms.

The Allais Paradox

The first and perhaps most famous violation of the
standard models of choice under uncertainty is due
to M. Allais, who presented experimental evidence
which is inconsistent with the NM axioms. A varia-
tion of this paradox was reported by Kahneman and
Tversky. They observed that 82% of the subjects
chose a gamble A over another gamble B, and 83%
of the subjects chose a gamble C over another D, so
that at least 65% chose B and C. However, as shown
below, this pair of gambles B and C is inconsistent
with the NM model of expected utility.

Example Gamble A consists of a 0.33 chance of
winning $2500, a 0.66 chance of winning $2400,
and a 0.01 chance of winning $0; while gamble B is
a 1.0 chance of winning $2400. Gamble C consists of
a 0.33 chance of winning $2500, and a 0.67 chance of
winning $0; while gamble D consists of a 0.34 chance
of winning $2400 and a 0.66 chance of winning $0.

Observe that if an individual prefers B over A, this
means that their (sure) utility functionu over income
satisfies

u�2400� > 0.33u�2500� C 0.66u�2400� C 0.01u�0�

or

0.34u�2400� > 0.33u�2500� C 0.01u�0� �9�

the latter of which contradicts a choice in favor of C,
because choosing C over D implies

0.33u�2500� C 0.67u�0� > 0.34u�2400� C 0.66u�0�

�10�

One way to resolve this paradox is to understand
that, when the new axioms are taken into consid-
eration, the individual’s utility functionu has two
components in cases of small-probability events: one
of these components is the expected utility, and the
other is focused on the small-probability eventu(0).
Therefore (9) above can be now written as

0.34u�2400� > 0.33u�2500� C 0.01u�0� 
 �

for some real number� > 0, representing a higher
weight given to the low (0.01) probability event of
winning $0 than would be the case with expected
utility. This implies that

0.33u�2500� C 0.67u�0� 
 � <

0.34u�2400� C 0.66u�0�

which is no longer inconsistent with (10). With the
new axioms, therefore, (9) no longer contradicts (10)
and the Allain paradox has been resolved.

Open Questions

Risk aversion is typically defined with respect to the
utility function which appears inside the expected
utility functional (1). Here this definition may not
work, and an alternative definition may be needed.
An interesting open question is how to define risk
aversion for the functionals in (1), which satisfy our
axioms.

Another question is how to define repeated game
solutions (e.g. Nash equilibrium) that involve players
with welfare functions of the forms identified here,
and to explore when these solutions exist.

The traditional calculus of variation is based on
integral operators that have finite kernels, such as
exponential weight functions of the form e
�s. This
specification no longer holds here, and therefore the
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optimization of the operators emerging from the new
axioms require a new form of calculus of variation.
It is of interest that standard tools of the calculus
of variations must be redeveloped in new direc-
tions. Some results already exist [5, 6], but much
work is still needed. The study of optimal solutions
of this type of functional has led to asymptotically
autonomous dynamical systems, which occur natu-
rally when one extends the Euler–Lagrange analysis
of optimal solutions to encompass the type of opera-
tors defined here. Statistical analysis of such systems
also requires new tools.
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