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1. Introduction

Global environmental risks such as climate change and rising sea levels are
low-probability events with major, widespread (cf. Cass et al ., 1996) and possibly
irreversible consequences . These are fundamentally new risks that are not well
understood . Learning through experimentation is out of the question because these
risks are effectively irreversible in a timescale that matters. As a result, classic
theories, which rely on expected utility, may not work well because they underes-
timate low-probability events, as proven below. The need to make global environ-
mental decisions calls for a systematic analysis of choices involving low-probabil-
ity events with major irreversible consequences . The topic is of current importance
but has been neglected in the literature of choice under uncertainty .

This paper introduces a new decision making tool for such situations . Firstly, it
shows why the classic Von Neumann axioms do not work well in this context, as
they lead to expected utility criteria that can be insensitive towards small-probabil-
ity events . Secondly, the paper introduces and develops a new set of axioms
requiring sensitivity to both small and large-probability events . These axioms
appear to represent ways in which people rationalize the problem of making
decisions in situations involving catastrophic risks. The axioms are different from
the classic axioms by Von Neumann and Morgenstern and lead to a different
decision theory, which is not based on expected utility analysis . Finally, through a
representation theorem, I show that all the criteria implied by the new axioms have
the following form: one term that takes into account the maximization of expected
utility plus a second term, which is a well-defined operator that can be interpreted
as a desire to avoid a catastrophe . Both parts are present, and both turn out to be
important in making decisions under catastrophic risks. The paper provides
practical examples of how to use these criteria . It shows how the new axioms help
explain the so-called Allais paradox (Allais, 1988), which involves choices with
low-probability events and suggests new questions on game theory and on the
calculus of variations .

2. Von Neumann-Morgenstern (NM) axioms

A set of mathematical axioms introduced half a century ago by John Von
Neumann and Oscar Morgenstern gave rise to a now classical tool for decision
making under uncertainty. Several other mathematicians and economists, such as
Hernstein, Milnor and Arrow, developed related axioms (Hernstein and Milnor,
1953). The axioms formalize the properties of orders defined on sets of uncertain
events ; the orders are then used to rank or evaluate risky outcomes . The structure
of the decision problem is simple . A system with uncertain characteristics is in one
of several possible states ; each state is the value of a random variable, which
describes the system . For example: the average temperature of the planet's surface
is a state. The system's states can be described by real numbers .
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To each state s E R, there is an associated outcome, for example to each
temperature level, there is an associated vector describing soil fertility and
precipitation. Therefore, one has x(s) E RN, N >_ 1 . When the probabilities associ-
ated to each state are given, a description of outcomes across all states is called a
"lottery" .' A lottery is therefore a function x : R - RN, and the space of all
lotteries is a function space L.

The NM axioms provide a mathematical formalization of how to rank or order
lotteries, i .e . of what reasonable ways to order the elements of L. ; Optimization
according to such an order defines standard decision making under uncertainty.
A main result obtained from the NM axioms is a representation theorem : a

characterization of all the functionals on L, which satisfy the NM axioms .
Maximizing such a functional W: L -~ R over a constrained set given by initial
conditions defines rational choice under uncertainty . NM proved that an order over
lotteries, which satisfies their axioms, admits a representation by an integral
operator W: L --> R, which has, as a kernel, a countably additive measure over the
set of states . Such operators are called "NM utilities" and the decision procedure
obtained by optimizing such utilities is called "expected utility maximization", so
that :

W( x) = f

	

u( x( s))d[t,( s),
se R

where the real line R is the state space, the function x : R ---> RN is a "lottery",
u:R N - R is a "utility function" describing the utility provided by the outcome
of the lottery in each state .s, u(s), and dtt,(x) is a countably additive measure
defining a probability distribution over measurable subsets of states in R. It is
standard to require that the utility function is bounded to avoid the St . Petersburg
paradox (Arrow, 1971, Chap . 3) so that the utility values of all lotteries in L are
uniformly bounded. According to the NM representation theorem, rational choice
under uncertainty that satisfies the NM axioms, must take the following form : a
lottery x is ranked above another _Y if and only if W assigns to x a larger real
number. In symbols :

x}y-W(x) > W(Y),

where W satisfies Eq . (1) .

2 A lottery is also described by the probabilities of each state and the outcomes in each state .
The NM model presumes that the outcomes themselves are ranked: it creates a utility index for the

outcomes consistent with this ranking and a decision criterion for choice amongst lotteries . In this
sense, the NM model does two jobs at once .

The assumption of "bounded utility" is sufficient but not necessary for avoiding the St . Petersburg
paradox: As Bernoulli pointed out, the logarithmic utility function u( .r)=log(x), would deliver a
finite expected utility in the context of the St . Petersburg paradox. However, we need p(s)u(x(s)) to
converge to zero as .s - x for the integral to exist.
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The optimization of expected utility is a widely used procedure for evaluating
choices under uncertainty . Mathematically, functionals such as W are convenient
because they are amenable to a large body of knowledge that goes back several
centuries: the calculus of variations . The Euler Lagrange equations are typically
used to characterize optimal solutions . Such mathematical tools are widely used
and very valuable to find and describe choices under uncertainty .

3. Catastrophic risks

A catastrophic risk is a low-probability event, which can lead to major and
typically irreversible losses . As already mentioned, global environmental problems
have these characteristics . The classic methods defined above, despite their
widespread use are not satisfactory for evaluating catastrophic risks . The reasons
are both practical and theoretical. From the practical point of view, it has been
shown that using such criteria undervalues catastrophic risks and hence conflicts
with the observed evidence of how humans evaluate such risks. For example using
NM utilities, the most damaging scenarios of global climate change induce little if
any economic loss . The Intergovernmental Panel on Climate Change (IPCC), the
main international scientific organization in this area, recently predicted a highly
contested figure of about 2% loss of economic value from a doubling of CO,
concentration in the atmosphere . This is a symptom of a more general phe-
nomenon: a simple computation shows that the hypothetical disappearance of all
irrigation water in the USA and all the country's agricultural produce would have
at most a 2 1/2% impact on its gross domestic product. This finding underscores
the importance of using appropriate criteria for evaluating catastrophic risks.

Mathematically, the problem arises from the fact that the expected utility
operator W that emerges from the NM representation theorem (1) is defined with
respect to a probability measure A, which is therefore a countably additive . Since
the "utility" function u :R N --* R is bounded (i.e . sup ., R iu(x)l < oo), the count-
able additivity of A, can be shown to imply that any two lotteries x, y E L are
ranked by W quite independently of the utility of the outcome in states whose
probabilities are lower than some threshold level e > 0, where e depends on x
and y. To show this formally, I introduce the following definition :

Definition 1. A functional W: L -4 R is called "insensitive to small-probability
events" when:

W( x) > W( y) p 3e > 0:

W( x') > W( y')

	

(2)
for all x', y' such that

x'= x and y' = y a .e . on A` C R :IL( A) < e .



The interpretation of this definition is that W ranks x above 1. if and only if it
ranks x' above y' for any pair of lotteries x' and y' that are obtained by
modifying arbitrarily x and v in sets of states A with probability lower than e.
Under these conditions, one says that the ranking defined by W is "insensitive"
to the outcomes of the lottery in small-probability events . The following lemma
shows that, as defined by NM, the expected utility criterion W is not well suited
for evaluating catastrophic risks . For simplicity of notation and without loss of
generality, let N = 1 ; the same results hold for arbitrary N.

Lemma 1. Expected utility is insensitive to small-probability events .

Proof. The expected utility criterion ranks lotteries in L as follows: x(s) } y(s)
a 3 a measurable and bounded utility function u : R -~ R and a probability
measure /ii on R such that :

Now

Let

where

if

then

and

Therefore,
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fRu(x(s))dA(s) >- fRu( y( s))dA(s) .

fRu( x( s))dlt( s) >- fRu( y( s))dli( s) - 38 > 0 :

fRu( x( s))dlL( s) >- fRu( y( s))dla( s) + S .

E= E(x,y) = S/6K,

K= Sup.r e L. .,E RIu( x(s))I .

x' = x and y' = ya .e . on S`,
where

h.( S) < E,

IfRu(x(s))dlL(s) - fRu(x'(s))dA(s)I< 2 Kli(S)< 5/3,

IfRu(y(s))dA(s) - fRu( y'(s))dlt(s)l < 2KA(S) < 5/3 .

x >-Y

	

fRu( x'( s))dlk(s) > fRu( y'(s))dlk(s) -x' r y' .
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Reciprocally :

so that for E= 8/6K

x } y p 3E> 0 : x' r y' when x = x' and Y = Y' a .e . on any S : g(S`) < E

and therefore by definition, the expected utility criterion is insensitive to small-
probability events .

By the result just established, cost-benefit analysis under uncertainty based on
expected utility maximization underestimates the outcomes of small-probability
events . It is biased against certain environmental projects that are designed to
prevent catastrophic events . Experimental evidence shows that humans treat
choices under uncertainty somewhat differently from what the NM axioms would
predict and raises questions about the need for alternative axioms, which describe
more accurately human beings' valuations .

4. Updating NM axioms

Recently, a new set of axioms, which update NM axioms to correct the bias
pointed out in Section 3 against small-probability events, has been developed .
Chichilnisky (1996a) introduced a well-defined set of axioms that contrast with
NM axioms and produced the attendant representation theorems, identifying new
types of functionals that are maximized under uncertainty . These axioms parallel
similar tJ axioms and criterion for choice over time introduced in Chichilnisky
(1996b, 1997).5

5. New axioms for choice under uncertainty

We propose three axioms for choice under uncertainty that must be satisfied by
the criterion W: L -4 R used to evaluate lotteries . The first axiom is satisfied by
expected utility; the other two are not . The first axiom involves linearity and
continuity of the criterion with respect to the utility derived from lotteries, where
continuity is defined with respect to the sup norm on the space of utility values
associated with lotteries L. Formally, utility values of lotteries L are in the space
of measurable and essentially bounded functions on R, with the norm 11u(x(s))11
= SupxG r. . ee RI u(x(s))I .

5 See also Machina (1982, 1989) for an alternative analysis to NM treatment of decision making
under uncertainty . Machina does not provide an axiomatic treatment .
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Axiom 1. Continuity of the functional W with respect to its argument, the utility
of the lottery u(x).6

Axiom 2. Sensitivity to low-probability events . This rules insensitivity to low-
probability events as in Definition 1 above.

Axiom 3. Sensitivity to large-probability events . This rules out insensitivity to
events of large probability, as defined below :

Definition 2. A ranking is said to be insensitive to large-probability events when
Vx, Y 3e > 0, e (x, y) such that

W(x) > W(y) "W(x') > W(y')

	

(3)

for all lotteries x', y' such that x = x', y = y' a.e . on S` where II(S) > 1 - e . In
words : the ranking is the same on any two lotteries x' and y' that are obtained by
modifying arbitrarily x and y in any bounded set of states S C R, which may have
an arbitrarily large probability.

Example 1. As an example of a function that is insensitive to large-probability
events, consider the space of all continuous linear real valued functions on Lx, the
"dual" of Lx , denoted Lx . Within this dual, consider a "purely finitely additive
measure" v on R that assigns measure zero to any bounded set in R, i.e .
P(S) = 0 if b' x E S, I xI < K, for some K> 0. Such measures define functionals
satisfying Eq . (3). Such functionals are ruled out by Axiom 3, which requires
sensitivity to large-probability events . Indeed, such functionals put all the
"weight" on infinity, i.e . on events of arbitrarily small probabilities according to
the countably additive measure fit, on R.

6. A representation theorem

Like the NM axioms, the three new axioms presented above lead to a
representation theorem establishing the form of every ranking of lotteries that
satisfies the three axioms given above . It has been shown in Chichilnisky (1992),'
that there exist functionals T: L~ --* R that rank all lotteries and satisfy all the
axioms . Rather than countably additive kernels, however, these functionals are a
convex combination of integral operators with countably additive kernels and

6 Continuity is defined with respect to the sup norm on the space of utility values associated with
lotteries L. The space of utibty values of lotteries L is the space of all measurable essentially bounded
functions on R, and the sup norm is defined as jju(x(s))jj=Sup,.,,. . ,E ju(X(s))1-

7 Op . cit .
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purely finitely additive measures, with both elements (countably and finitely
additive) non-zero .

Theorem 1. Any ranking } of lotteries in L = Lx(R) satisfying the three axioms
defined must be of the form:

x }y<:* W( X) > W( y),
where W.-L ---~ R

W( x)
=AL

fRu(x(s))dg(s)
J
+(1 -A)0(u(x(s))),

for 1l E (0, 1), N-:R -+ R, f.t, is a probability measure on R, and O:L -4 R, (P E L'
- L, is a purely finitely additive measure.

Proof. The proof follows the line of argument presented in Chichilnisky (1996b,
1997). As defined above, for any bounded utility f.t,, the space of all utility values
derived from lotteries can be described as a bounded subset in LJ R) with the sup
norm. By Axiom 1, we are looking for an element of the dual space Lx (R), the
space of all continuous linear real valued functions on LJ R). By standard results
in functional analysis, the dual space L7 (R) consists of L,(R) as well as another
space consisting of "purely finitely additive" measures, namely continuous linear
functions that assign zero value to any function supported on a bounded set of R.
By Axiom 2, the function W is not contained in L,, since in that case as shown in
Lemma 1, Axiom 2 is violated . Axiom 3 implies that W is not a purely finitely
additive measure either ; as shown in Chichilnisky (1996b, 1997), the only possible
form is as represented above.8 El

Example 2. As an illustration of the representation theorem presented above,
consider the case when the states are discrete, indexed by the integers Z rather
than R. For each real number A, 0 < N, < 1, a continuous linear functional
W:Ix -R can be defined as follows:

W( x) =ILEA- `u(x( s)) +(1 -kt,)limu(x(s)),

	

(4)
.s= I

	

SE Z

where lim,. E zu(x(s)) is the (Hahn-Banach) extension of the continuous linear
"limit" operator to the space l, of all bounded real valued functions on Z. The
interpretation of the two parts of the function ~V in Eq. (4) is simple . The first part
is an integral operator with an integrable kernel [A -J., z that defines a countably
additive measure on Z and therefore emphasizes the weight of large-probability

a The connection between the function W(x) and the Prospect theory of Kahneman and Tversky is
the subject of another article .



events in the ranking of a lottery x E lx . The second part defines a purely finitely
additive measure on Z, which assigns positive weight to "small-probability"
events . It defines a measure with "heavy tails" . Both parts are present, so 1Y is
sensitive to small and large-probability events . Catastrophic risks are therefore
ranked more realistically by such functionals.

7. More examples and open questions

7.1 . Examples

Consider an electrical utility such as Con Edison in New York. They seek to
implement a production and service plan that would be optimal under normal
conditions, while at the same time avoiding a potentially catastrophic "black out"
incident that could be costly in monetary terms and in human lives . Following
Axioms 1-3 and Theorem 1, a typical criterion that would be adopted would
involve choosing among all possible plans so as to maximize the expected
electrical throughput plus minimizing the probability of reaching a critical level
beyond which there would be a "black out" . It can be shown that such a criterion
would satisfy Axioms 1-3 .

7.2. The Allais paradox
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The first and perhaps most famous violation of the expected utility models of
choice under uncertainty is due to M. Allais, who showed experimental evidence
that is inconsistent with NM axioms . A variation of this paradox was reported by
Kahneman and Tversky (Tversky and Wakker, 1995). They defined four lotteries
A, B, C and D, and observed that 82% of the subjects chose gamble A over
another gamble B, and 83% of the subjects chose a gamble C over another D, so
that at least 65% chose B and C. However, as shown below, the pair of gambles B
and C is inconsistent with NM model of expected utility:

Example 3. Gamble A consists of a 0.33 chance of winning US$2500, 0.66
chance of winning US$2400, and 0.01 chance of winning US$0, while gamble B
has one chance of winning US$2400. Gamble C consists of 0.33 chance of
winning US$2500, and 0.67 chance of winning US$0, while gamble D consists of
0.34 chance of winning US$2400 and 0.66 chance of winning US$0.

Observe that if an individual prefers B over A, under the expected utility
assumption this means that their (sure) utility function u over income satisfies

u(2400) > 0.33u(2500) + 0.66u(2400) + 0.01 u(0)
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or

0 .3411(2400) > 0.3311(2500) + 0.01 11(0),

	

(5)

the latter of which contradicts a choice in favor of C because choosing C over D
implies

0 .3311(2500) + 0.6711(0) > 0.3411(2400) + 0.6611(0) .

	

(6)

This contradiction is what is called an "Allais paradox" .
One way to resolve this paradox is to understand that, when our new axioms

are taken into consideration, the individual's utility function u has two compo-
nents in cases of small-probability events : one of these components is expected
utility (as above), and the other is focused on the small-probability event 11(0).
Therefore, inequality (5) above can now be written as :

0.3411(2400) > 0.3311(2500) + 0.01 11(0) - 9,

for some real number 0 > 0, representing a higher weight given to the low-prob-
ability (0.01) event of winning US$0 than would be the case with expected utility .
This implies:

0.3311(2500) + 0.6711(0) - 6 < 0.3411(2400) + 0.6611(0),

which is no longer inconsistent with Eq . (6). With the new axioms, therefore, Eq.
(5) no longer contradicts Eq. (6) and the Allais paradox has been "resolved" .

7.3 . Open questions

" Risk aversion is typically defined with respect to the utility function that
appears inside the expected utility functional (1). Here, this definition may not
work, and an alternative definition may be needed . An interesting open question is
on how to define risk aversion for the functionals in Eq. (1), which satisfy our
axioms .

" Another question is how to define repeated game solutions (e.g . Nash
equilibrium) that involve players with welfare functions of the forms identified
here and to explore when these solutions exist.

" The traditional calculus of variation is based on integral operators that have
"finite" kernels, such as exponential weight functions of the form e" . This
specification no longer holds here, and therefore the optimization of the operators
emerging from the new axioms requires a new form of calculus of variation. It is
of interest that standard tools of calculus of variations must be redeveloped in new
directions . Some results already exist, e.g . Chichilnisky (1996b, 1997), but much
work is still needed . The study of optimal solutions of these type of functionals
has led to asymptotically autonomous dynamical systems that occur naturally
when one extends the Euler Lagrange analysis of optimal solutions to encompass
the type of operators defined here . Statistical analysis of such systems also
requires new tools.
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