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CHAPTER 7

Catastrophe futures: Financial markets for
unknown risks

Graciela Chichilnisky and Geoffrey Heal

1 Introduction
New risks seem to be unavoidable in a period of rapid change . The last
few decades have brought us the risks of global warming, nuclear melt-
down, ozone depletion, failure of satellite launcher rockets, collision of
supertankers, AIDS, and Ebola. t A key feature of a new risk, as opposed
to an old and familiar one, is that one knows little about it. In particu-
lar, one knows little about the chances or the costs of its occurrence . This
makes it hard to manage these risks. Existing paradigms for the rational
management of risks require that we associate frequencies to various
levels of losses. This poses particular challenges for the insurance indus-
try, which is at the leading edge of risk management. Misestimation of
new risks has led to several bankruptcies in the insurance and reinsur-
ance businesses.' In this chapter we propose a novel framework for pro-
viding insurance cover against risks whose parameters are unknown. In
fact many of the risks at issue maynot be just unknownbut also unknow-
able. It is difficult to imagine repetition of the events leading to global
warming or ozone depletion, and therefore difficult to devise a relative
frequency associated with repeated experiments.
A systematic and rational way of hedging unknown risks is proposed

here, one which involves the use of securities markets as well as the more
traditional insurance techniques. This model is consistent with the

We are grateful to Peter Bernstein, David Cass, and Frank Hahn for valuable comments
on an earlier version of this chapter .
' A deadly viral disease .
z Many were associated with hurricane Andrew which at $18 billion in losses was the most
expensive catastrophe ever recorded. Some of the problems which beset Lloyds of
London arose from underestimating environmental risks.
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current evolution of the insurance and reinsurance industries, which are
beginning to explore the securitization of some aspects of insurance con-
tracts via Act of God bonds, contingent drawing facilities, catastrophe
futures, and similar innovations. Ourmodelprovides a formal framework
within which such moves can be evaluated . An earlier version of this
framework was presented in Chichilnisky and Heal (1993) . Chichilnisky
(1996) gives a more industry-oriented analysis.

This merging of insurance and the securities market is not surprising :
Economists have traditionally recognized two ways of managing risks.
One is risk pooling, or insurance, invoking the law of large numbers
for independent and identically distributed (IID) events to ensure that
the insurer's loss rate is proportional to the population loss rate . This will
not work if the population loss rate is unknown. The second approach is
the use of securities markets, and of negatively correlated events. This
does not require knowledge of the population loss rate, and so can be
applied to risks which are unknown or not independent. Securities
markets alone could provide a mechanism for hedgingunknown risks by
the appropriate definition of states, but as we shall see this approach
requires an unreasonable proliferation of markets. Using a mix of the
two approaches can economize greatly on the number ofmarkets needed
and on the complexity of the institutional framework. In the process
of showing this, we also show that under certain conditions the market
equilibrium is anonymous in the sense that it depends only on the dis-
tribution of individuals across possible states, and not on who is in
which state.
The reason for using two types of instruments is simple . Agents face

two types of uncertainty: uncertainty about the overall incidence of a
peril, that is, how many people overall will be affected by a disease, and
then, given an overall distribution of the peril, uncertainty about whether
they will be one of those affected . Securities contingent on the distribu-
tion of the peril hedge the former type of uncertainty; contingent insur-
ance contracts hedge the latter .
Our analysis implies that insurance companies should issue insurance

contracts which depend on the frequency of the peril, or statistical state.
The insurance companies should offer individuals an array of insurance
contracts, one valid in each possible statistical state. Insurance contracts
are therefore contingent on statistical states. Within each statistical state
probabilities are known, and companies are writing insurance only on
known risks, something which is actuarially manageable . Individuals then
buy the insurance they want between different statistical states via the
markets for securities that are contingent on statistical states. The fol-
lowing is an illustration for purchasing insurance against AIDS, if the
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actuarial risks of the disease are unknown. One would buy insurance
againstAIDS by (1) purchasing a set of AIDS insurance contracts each
of which pays off only for a specified incidence of AIDS in the popula-
tion as a whole, and (2) making bets via statistical securities on the inci-
dence of AIDS in the population . Similarly, one would obtain cover
against an effect of climate change by (1) buying insurance policies
specific to the risks faced at particular levels of climate change, and (2)
making bets on the level of climate change, again using statistical secu-
rities. The opportunity to place such bets is provided in a limited way by
catastrophe futures markets whichpayan amount dependingon the inci-
dence of hurricane damage .

This chapter draws on recent findings of Chichilnisky andWu (1991)
and Cass, Chichilnisky, andWu (1996), both of which study resource allo-
cation with individual risks. Each of these essays develops further
Malinvaud's (1972, 1973) original formulation of general equilibrium
with individual risks, and Arrow's (1953) formulation of the role of secu-
rities in the optimal allocation of risk bearing. Our results are valid for
large but finite economies with agents who face unknown risks and who
have diverse opinions about these risks. In contrast, Malinvaud's results
are asymptotic, valid for a limiting economy with an infinite population,
and deal only with a known distribution of risks. The results presented
here use the formulation of incomplete asset markets for individual risks
used to study default in Chichilnisky andWu (1991), Section 5.c .The risks
considered here are unknown and possibly unknowable, and each indi-
vidual has potentially a different opinion about these risks, whereas
Chichilnisky and Wu (1991) and Cass, Chichilnisky, and Wu (1991)
assume that all risk is known.

2

	

Notation and definitions

Denote the set of possible states for an individual by S, indexed by s =
1, 2, . . ., S. Let there be H individuals, indexed by h = 1, 2, . . . , H. All
households have the same state-dependent endowments. Endowments
depend solely on the household's individual state s, and this dependence
is the same for all households . The probability of any agent being in any
state is unknown, and the distribution of states over the population as a
whole is also unknown. A complete description of the state of the
economy, called a social state, is a list of the states of each agent.A social
state is denoted a- it is an H- vector. The set of possible social states is
denoted 9 and has SX elements.A statistical description of the economy,
called a statistical state, is a statement of the fraction of the population
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each state. It is an S - vector. As shown by Malinvaud (1973) there

rH+ S -
1)

statistical states . Clearly many social states map into a
~\

given statistical state. For example, if in one social state you are well and
I am sick and in another, I am well and you are sick, then these two social
states give rise to the same statistical state. Intuitively, we would not
expect the equilibrium prices of the economy to differ in these two social
states. One of our results shows that under certain conditions, the char-
acteristics of the equilibrium are dependent only on the statistical state.
How does the distinction between social and statistical states con-

tribute to risk management? Using the traditional approach, we could in
principle trade securities contingent on each of the S" social states. This
would require a large number of markets, a number which grows rapidly
with the number of agents . However, the institutional requirements can
be greatly simplified.When the characteristics of the equilibrium depend
only on the statistical state, one can trade securities which are contingent
on statistical states, that is, contingent on the distribution of individual
states within the population, and still attain efficient allocations. This

` means that we trade securities contingent on whether 4% or 8% of the
population are in state 5, but not on which people are in this state. Such
securities, which we call statistical securities, plus mutual insurance con-
tracts also contingent on the statistical state, lead (under the appropri-
ate conditions) to an efficient allocation of risks. A mutual insurance
contract contingent on a statistical state pays an individual a certain
amount in a given individual state if and only if the economy as a whole
is in a given statistical state.

Let z ho denote the quantity of good j consumed by household h in
social state a: zho is anNdimensional vector of all goods consumed by h
in social state a, z h, = z ho, j = 1, . . . , N, and zh is an NS' dimensional
vector of all goods consumed in all social states by h, z h = zha, a s S2 3

Let s(h, v) be the state of individual h in the social state a, and rs(a)
the proportion of all households for whom s(h, a) = s . Let r(o) = rt(a),

. , rs (o) be the distribution of households among individual states
within the social state a, that is, the proportion of all individuals in
state s for each s. r(o) is a statistical state. Let R be the set of statistical
states, that is, of vectors r(a) when v runs over S2 . R is contained in the

5-dimensional simplex and has ~H + S - 1~ elements, see Malinvaud
S-1

(1973) p. 385.
3 Consumption vectors are assumed to be nonnegative.
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11' is household h's probability distribution over the set ofsocial states
S2, and rl'a denotes the probability of state v. Although we take social
states as the primitive concept, we in fact work largely with statistical
states. We therefore relate preferences, beliefs, and endowments to sta-
tistical states. This is done in the next section.Any distribution over social
states implies a distribution over statistical states .

The following anonymity assumption is required:

r(o) = r(o,, ) ---> IIQ = IIQ-

This means that two overall distributions a and 6' which have the same
statistical characteristics are equally likely. Then II.' defines a probabil-
ity distribution II" on the space of statistical states R. IIh can be inter-
preted, as remarked above, as h's distribution over possible distributions
of impacts in the population as a whole. The probability that a statistical
state r obtains and that simultaneously, for a given household h, a par-
ticular state s also obtains, Its, is'

jisr =

	

r r, with

	

Sr = n7,

The probability Its that, for a given h, a particular individual state s
obtains is therefore given by

IT" -- YIInrs

	

r s
reR

where r,. is the proportion of people in individual state s in statistical state
r. Note that we denote by IIsr the conditional probability of household
h being in individual state s, conditional on the economy being in statis-
tical state r. Clearly 2,1

	

r = 1. Anonymity implies that

Mt, = rs

that is, that the probability of anyone being in individual state s contin-
gent on the economy being in statistical state r is the relative frequency
of state s contingent on statistical state r.

3

	

The behavior of households
Let es be the endowment of household h when the individual state is s.
We assume that household halways has the same endowment in the indi-

° See Malinvaud (1973), p. 387, para .1 .
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vidual state s, whatever the social state. We also assume that all house-
holds have the same endowment if they are in the same individual state.
Endowments differ, therefore, only because of differences in individual
states. This describes the risks faced by individuals.

Individuals have von Neumann-Morgenstern utilities:

Wh
(Zh) = YIIhUh(Zha)

a

This definition indicates that household h has preferences on consump-
tion which may be represented by a "state separable" utility function
defined from elementary state-independent utility functions .
We assume like Malinvaud (1972) that preferences are separable over

statistical states . This means that the utility of household h depends on a
only through the statistical state r(a) . If we assume further that in state
a household h takes into account only its individual consumption, and
what overall frequency distribution r(a) appears, and nothing else, then
its consumption plan can be expressed as zor h = zhsr: Its consumption
depends only on its individual state s and the statistical state r .
Summation with respect to social states a in the expected utility func-
tion can now be made first within each statistical state. Hence we can
express individuals' utility functions as :

Wh (Zha) - I:rjsrUh(Zhsr)
r,s

which expresses the utility of a household in terms of its consumption at
individual state s within a statistical state r, summed over statistical states.
This expression is important in the following results, because it allows us
to represent the utility of consumption across social states a as a func-
tion of statistical states r and individual states s only. The functions U,
are assumed to be CZ, strictly increasing, strictly quasiconcave, and the
closure of the indifference surfaces { US`} -1 (x) c int (R") for all x C= R' .

The probabilities IIo are in principle different over households.

Efficient allocations
Let p* be a competitive equilibrium5 price vector of the ArrowDebreu
economy Ewith markets contingent on all social states and let z* be the
associated allocation . We will as usual say that z* is Pareto efficient if it
is impossible to find an alternative feasible allocation which is preferred

S Defined formally below.
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by at least one agent and to which no agent prefers z* . Let po* and za*
be the components of p* and z* respectively which refer to goods con-
tingent on state a.
We now define an Arrow-Debreu economy E, where markets exist

contingent on an exhaustive description of all states in the economy, that
is, for all social states a e Q. We therefore have NS'contingent markets.
AnArrow-Debreu equilibrium is aprice vectorp* = (po) e RN"',for each
apoe RN+ , ae S2, and an allocation z* consisting of vectors z* = (zh) eRN"n, z*o e RN+ , oe 52, h = 1, . . . , Hsuch that for all h, z*, maximizes

Wh
(zh) -

I
rlaUh(Zha

Q

subject to a budget constraint

p(zh - eh ) = 0

	

(4.2)

and all markets clear:

Y.(zh - eh ) = 0

	

(4.3)

Proposition 1 considers the case when households agree on the proba-
bility distribution over social states,' this common probability is denoted
11. It follows that they agree on the distribution over statistical states. In
this case, the competitive equilibrium prices p* and allocations z* are the
same across all social states a, leading to the same statistical state r.'

Proposition 1:

	

When agents have common probabilities, (see
footnote 6) i.e., rI h = IIIb'h, j, then equilibriumprices depend only
on statistical states. Consider an Arrow-Debreu equilibrium of
the economy E, p* = (pQ* ), z* = (zo*), a e S2 . For every state a
leading to a given statistical state r, that is, such that r(a) = r, equi-
librium prices and consumption allocations are the same that is,
there exists a price rector pr*and an allocation z* such that Vv:
r(o) = r, po* = pr*, and za* = z* wherepr* E= RN+ and z* e RN'
depend solely on r.

In a recent article, Klimper and Requate (1997) show that Proposition 1's proof holds
also for households that do not agree on a common probability distribution over social
states.

7 Related propositions were established by Malinvaud in a simpler economy where all
agents are identical, and risks are known .
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Proof In the Appendix .

	

QED.

Definition:

	

Aneconomy E is regular ifat all equilibrium prices
in E the Jacobian matrix offirst partial derivatives of its excess
demand function has full rank. Regularity is a generic property
(Debreu (1970), Dierker (1982)).

We now consider the general case, which allows for II'' * TV if h 0 j.
Proposition 2 states that if the economy is regular, if all households have
the same preferences and if there are two individual states, there is
always one equilibrium at which prices are the same at all social states
leading to the same statistical state. This confirms the intuition that the
characteristics of an equilibrium should not be changed by a permuta-
tion of individuals : If I am changed to your state, and you to mine, every-
one else remaining constant, then provided you and I have the same
preferences, the equilibrium will not change.

Proposition 2:

	

Assume II' :# II' for some households h, k.
When E is a regular economy, all agents have the same utilities,'
and there are two individual states, then one of the equilibrium
prices p* must satisfy pal = p*a2 for all a,, a2 with r(al) = r(a2) .

Proof: In the Appendix.

	

QED.

Equilibrium in incomplete markets for unknown risks
Consider first the case where there are no assets to hedge against risk, so
that the economy has incomplete asset markets. Individuals cannot trans-
fer income to the unfavorable states. Examples are cases where individ-
uals are not able to purchase hurricane insurance, as in some parts of the
southeastern United States and in the Caribbean . Market allocations are
typically inefficient in this case, since individuals cannot transfer income
from one state to another to equalize welfare across states.Which house-
holds will be in each individual state is unknown. Each individual has a
certain probability distribution over all possible social states o, II'` . In
each social state 6 each individual is constrained in the value of her/his
expenditures by her/his endowment [which depends on the individual
state s (h,u) in that social state] . In this context, a general equilibrium of

8 The condition that all agents have the same preferences is not needed for this result.
However, it simplifies that notation and the argument considerably. The general case is
treated in the working papers from which this article derives.
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the economy with incomplete markets E, consists of aprice vector p* with
NS' components and Hconsumption plans z* with NS' components
each, such that z,*maximizes W' (zh) :

subject to

po (zho -- eh,) = 0 for each o e S2

and

w h
(zh) = J:rIhUh(Zha)

H

VZh -eh) =0
h=1

The above economy E, is an extreme version of an economy with
incomplete asset markets (see, for example, Geanakoplos 1990) because
there are no markets to hedge against risks. There are SH budget con-
straints in equation (5.2).

6

	

Efficient allocations, mutual insurance, and securities

In this section we study the possibility of supporting Arrow-Debreu
equilibria by combinations of statistical securities and insurance con-
tracts, rather than by using state contingent contracts. As already
observed, this leads to a very significant roduction in the number of
markets needed . In an economy with no asset markets at all, such as E,,
the difficulty in supporting an Arrow-Debreu equilibrium arises because
income cannot be transferred between states. On the basis of Propo-
sitions 1 and 2, we show that households can use securities defined on
statistical states to transfer into each such state an amount of income
equal to the expected difference between the value of Arrow-Debreu
equilibrium consumption and the value of endowments in that state.
The expectation here is over individual states conditional on being in a
given statistical state. The difference between the actual consumption-
income gap given a particular individual state and its expected value is
then covered by insurance contracts. In the following, A denotes the

H+S- 1
combinatorial number A = ~

	

1
S-1

(5.2)

(5.3)

Theorem 1: Assume that all households in E have the same
probability II over the distribution of risks in the population.
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Then any Arrow-Debreu equilibrium allocation (P*,z*) of E
(and therefore any Pareto optimum) can be achieved within the
general equilibrium economy with incomplete markets E, by
introducing a total of A mutual insurance contracts to hedge
against individual risk, andA statisticalsecurities to hedge against
social risk. In a regular economy with two individual states and
identical preferences, even if agents have different probabilities,
there is always an Arrow-Debreu equilibrium (p*, z*) in E which
is achievable within the incomplete economy E, with the intro-
duction of LA mutual insurance contracts and A statistical
securities.

Proof In the Appendix .

	

QED.

6.1

	

Market complexity

We can now formalize a statement made before about the efficiency
of the institutional structure proposed in Theorem 1 by comparison
with the standard Arrow-Debreu structure of a complete set of state-
contingent markets. We use complexity theory, and in particular the
concept of NP completeness . The key consideration in this approach to
studying problem complexity is how fast the number of operations
required to solve a problem increases with the size of the problem.

Definition:

	

If the number of operations required to solve a
problem must increase exponentially for any possible way of
solving the problem, then the problem is called "intractable" or
more formally, NP-complete. If instead this number increases
polynomially, the problem is "tractable."9

The motivation for this defiuition is that if the number of operations
needed to solve the problem increases exponentially with some measure
of the size of the problem, there will be examples of the problem that
no computer can or ever could solve. Hence there is no possibility ofever
designing a general efficient algorithm for solving these problems.
However, if the number of operations rises only polynomially then it is
in principle possible to devise a general and efficient algorithm for the
problem.

Theorem 2 investigates the complexity of the resource allocation
problem in the Arrow-Debreu framework and compares this with the

' Further defuritions are in Garey and Johnson (1979) .
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framework of Theorem 1. We focus on how the problem changes as the
economy grows in the sense that the number of households increases,
and consider a very simple aspect of the allocation problem, described
as follows. Suppose that the excess demand of the economy Z(p) is
known. A particular price vector p* is proposed as a market clearing
price. We wish to check whether or not it is a market clearing price. This
involves computing each of the coordinates of Z(p) and then compar-
ing with zero . This involves a number of operations proportional to the
number of components of Z(p) ; we therefore take the rate at which the
dimension of Z(p) increases with the number of agents to be a measure
of the complexity of the resource allocation problem. In summary: we
ask how the difficulty of verifying market clearing increases as the
number of households in the economy rises. We show that in the
Arrow-Debreu framework this difficulty rises exponentially, whereas in
the framework of Theorem 1 it rises only polynomially.

Theorem 2:

	

Verifying market clearing is an intractable pro-
blem in an Arrow-Debreu economy, that is, the number of
operations required to check if a proposed price is market
clearing increases exponentially with the number of households
H. However, under the assumptionsofTheorem 1, in the economy
El supplemented by LA mutual insurance contracts and A
statistical securities, verifying market clearing is a tractable
problem, that is, the number of operations needed to check for
market clearing increases only polynomially with the number of
households.

Proof Thenumber of operations required to check that a price
is market clearing is proportional to thenumber of market clear-
ing conditions . In Ewe have NS' markets. Hence the number of
operations needed to check if aproposed price is market clear-
ing must rise exponentially- with the number of households H.
Consider now the case of E, supplemented by LA mutual in-
surance contracts and A securities. Under the assumptions of
Theorem 1, by Propositions 1 and 2, we need only check for
market clearing in one social state associated with any statisti-
cal state, because if markets clear in one social state leading to
acertain statistical state they will clear in all social states leading
to the same statistical state. Hence we need to check a number
of goods markets equal to MA, plus markets for mutual insur-
ance contracts and securities. Now
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H+S+1A=~ )=(D(H,S)
S-1

where (D (HS) is a polynomial in H of order (S - 1) . Hence A
itself is apolynomial inH whose highest orderterm depends on
H",completing the proof.

	

QED.

Catastrophe futures and bundles

We mentioned in the introduction that securities contingent on statisti-
cal states are already traded as "catastrophe futures" on the Chicago
Board of Trade, where they were introduced in 1994 . (The concept was
introduced anddeveloped in Chichilnisky and Heal (1993).) Catastrophe
futures are securities whichpay an amount that depends on the value of
an index (PCS) of insurance claims paid during a year. One such index
measures the value of hurricane damage claims ; others measure claims
stemming from different types of natural disasters. The value of hurri-
cane damage claims depends on the overall incidence of hurricane
damage in the population, but is not affected by whether anyparticular
individual is harmed . It therefore depends, in our terminology, on the sta-
tistical state, on the distribution of damage in the population, not on the
social state. Catastrophe futures are thus financial instruments whose
payoffs are conditional on the statistical state of the economy. They are
statistical securities.Accordingto our theory, asummaryversion ofwhich
appeared in Chichilnisky and Heal (1993), they are a crucial prerequi-
site to the efficient allocation of unknown risks. As the incidence and
extent of natural disaster claims in the United States has increased
greatly in recent years, risks such as property casualty due to hurricane
risks are in effect unknown risks. Insurers are concerned that the inci-
dence of storms may be related to trends in the composition of the
atmosphere and incipient greenhouse warming. However, catastrophe
futures are not on their own sufficient for this; they do not complete the
market. Mutual or contingent insurance contracts, as described above,
are also needed . These provide insurance conditional on the value of the
catastrophe index.The two can be combined into "catastrophe bundles" .
See Chichilnisky (1996) .

8 Conclusions

We have defined an economy with unknown individual risks and estab-
lished that a combination of statistical securities and mutual or contin-
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gent insurance contracts can be used to obtain an efficient allocation of
risk bearing. Furthermore, we have shown that this institutional struc-
ture is efficient in the sense that it requires exponentially fewer markets
than the standard approach via state-contingent commodities. In fact, the
state-contingent problem is "intractable" with individual risks (formally,
NP-complete) in the language of computational complexity, whereas our
approach gives a formulation that is polynomially complex. This greatly
increases the economy's ability to achieve efficient allocations. Another
interesting feature of this institutional structure is the interplay of insur-
ance and securities markets involved. Its simplicity leads to successful
hedging ofunknown risks and predicts a convergence between the insur-
ance and securities industries.

9 Appendix
Proposition 1:

	

When agents have common probabilities, that is,
IIh = IIiVh, j, then equilibrium prices depend only on statistical
states. Consider an Arrow-Debreu equilibrium ofthe economy E,
P* = (Pa *), z * = (z,,*), v e 0. For every state aleading to a given
statistical state r, that is, such that r(u) = r, equilibrium prices and
consumption allocations are the same, that is, there exists a price
vector p r* and an allocation z* such that Va.. r(a) = r, Pa* = pr*,
and z a* = z,*, where p* e RN+ and z* e R' depend solely on r.

Proof Consider a, and a2 with r(al) = r(a2) = r. Note that the
total endowments of the economyare the same in a, and a2, both
equal to s, = Hr,eh, (recall that e s = e, as endowments depend
only on individual states and not on household identities) . Also,
by the anonymity assumption, II, = IIo, = II� where II, is the
common probability of any social state in the statistical state r.
Let Ildr be the probability of being in social state agiven statis-
tical state r. By the anonymity assumption on probabilities this
is just 1/#52,.We now show that for every household h, zho, = z,,z,
due to the Pareto efficiency of Arrow-Debreu equilibria . Let
62, = for: r(a) = a} . Let z* = (z,*,,,), and assume in contradiction
to the proposition that there are a, and a2 e S6 r such that zh, :0
z*for some h. Define Ezhr = _7oe4,zh.fIolr = (1/#Q r) T,,2,~o.This
is the expected value of (zo) given that the economy is in the
statistical state r. Now

LEZhr -

	

�FrZha - ~Zha
h

	

h #Qr aei2,

	

h
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so that Ezha is a feasible consumption vector for each h in the
statistical state r. Next we show that by strict concavity, moving
for each h and each a from zh (which depends on a) to Ezhr
(which is the same for all a e S2) is a strict Pareto improvement.
This is because

Wh (Zha)

	

jjj'Uh (Zha) - yrir~HCI'Uh(Zha)
a

	

r CEO

By strict concavity of preferences,

Proof:

ErIr Erj,I,Uh(Zha)
<

r as4,

Y'nr I Uh(L.IZholIaIr) _ III'. IUh (Ezha )
r CEO, CEO r asS2

Since Ezha is Pareto superior to z* with zh, :# zha= , such a
z* cannot be an equilibrium allocation . Hence z* , = z* = zh

for all h =-1, . . . , H. Note that this implies that in an equilib-
rium, household h consumes the same allocation z*r across all
individual states s, that is, it achieves full insurance . Since p*
supports the equilibrium allocation z*, and zh, = zv2 it follows
that pa, = pa when r(a) = r(a2), because utilities are assumed
to be C2 and, in particular, to have a unique gradient at each
point which, by optimality, must be collinear both with po,
and with p*, that is, p* = p* = p*. This implies that at an
equilibrium, household h faces the same prices p*at any a with
r(o) = r. QED.

Proposition 2:

	

Assume II' :0 II' for some households h, k.
When E is a regular economy, all agents have the same utilities,"
and there are two individual states, one of the equilibrium prices
p* must satisfy p* = po for all ort,a2 with r(al) = r(o2).

Assume that E is regular, that all agents have the same pref-
erences, and that S = 2. Consider two social states o, and a2 with
r(al) = r(a2), and such that a, differs from oat only on the indi-
vidual states of the two households h, and h2 which are per-
muted, that is, s(h1,o,) = s(h2,a2) and s(h2,a1) = s(h1,a2) . Assume

'° The condition that all agents have the same preferences is not needed for this result, but
simplifies the notation and the proof considerably. In the working papers from which
this article derives, the general case was covered . See also footnote 6 for the case where
agents have different probabilities .
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that there exists an equilibrium price for E,p* E R '̂S", such that
its components in states a, and a2 are different, that is,pa 0 po.
Define now a new price P* e R^'s", called a "conjugate" of p*,
which differs from p* only in its coordinates in states a, and a2,
which are permuted as follows: V a --A a,,a2, pa* = pa*, pa*, = Pav
and pa = pa*, . We now show that p* is also an equilibrium
price for the economy E. At p*, household h, has the same
endowments and faces the same prices in states a, and a2 as it
did at states a2 and a, respectively at price p* ; at all other states
a e 52, h, faces the same prices and has the same endowments
facing p* and facing p* . The same is true of household h2 .
Furthermore h, and h2 have the same utilities and probabilities
at a, and a2 because r(al ) = r(a2) and probabilities are anony-
mous.Therefore the excess demand vectors of h, in states a, and
a2 at prices p* equal the excess demand vectors of h2 in a2 and
a, respectively at prices p*, and at all other states a e 52 the
excess demand vectors of h, are the same at prices p* and p*.
Reciprocally, the excess demand vectors of h2 in a, and a2 at
prices p* equal the excess demand vectors of h, in a2 and a,
respectively at prices p*, and in all other states a, the excess
demand vectors of h2 are the same as they are with prices p* .
Formally :

Zh=c,(P *~ - Zh,a, (P

	

Zh=a2 (P *~ - Zh,a, (P *~

and b'o e 52, a 0 a,, a2:

Zh,a (P *) = Zh,o (P *), Zh2 a(P *) = Zh,a (P *)

The excess demand vectors of all other households h 0 h,, h2
are the same forp* and p* . Therefore at p* the aggregate excess
demand vector of the economy is zero, so that p* is an equilib-
rium. The same argument shows that permuting the two com-
ponents p,*,,p* of a price p* at any two social states u,,u2 leading
to the same statistical state r(u,) leads from an equilibrium price
p* to another equilibrium price p* . This is because if two social
states a, and a2 lead to the same statistical state and there are
two individual states s, and s2 then there is a number k > 0 such
that k households who are in s, in a, are in s2 in a2 and another
k households who were in s, in a2 are in s2 in a,, while remain-
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ing in the same individual states otherwise . These two sets of k
households can be paired. For every pair of households, the
above argument applies. Hence it applies to the sum of the
demands, so that the new price p* is an equilibrium.
Nowconsider any regular economyE with a finite number of

equilibrium prices denoted pi,. . .,p*. We shall show that there
exists a j s k s.t. p!1 assigns the same price vector to all social
states 61,u2 with r(ul) = r(a2) . Start with p*; ifp* does not have
this property, consider the first two social states 61,62 with r(Ql)
= r(a2) and pt*o 0 p* Z Define p* as the conjugate of p* con-
structed by permuting the prices of the social states Qt and 62 .
If b'j > 1, p*= p*, then there are two price equilibria, that is,
k = 2 ; since, however, the number of price equilibria must be
odd," there must exist p* with j, > 1 andp* * p*. Consider now
the conjugate ofp* with respect to the first two social states a1,o2
which correspond to the same statistical state and have differ-
ent components in p*, and denote this conjugate p*. Repeat the
procedure until all equilibria are exhausted. In each step of this
procedure, two different price equilibria are found. Since the
number of equilibria must be odd,it follows that there must exist
aj <_ k for which all conjugates ofp* equalp*This is the required
equilibrium which assigns the same equilibrium prices pa*, = pv
to all Qt,Q2 with r(al ) = r(o2), completing the proof.

	

QED.

Theorem 1: Assume that all households in E have the same
probability II over the distribution of risks in the population .
Then any Arrow-Debreu equilibrium allocation (p*,z*) of E
(and therefore any Pareto optimum) can be achieved within the
general equilibrium economy with incomplete markets E, by
introducing a total of A mutual insurance contracts to hedge
against individual risk, andA statistical securities to hedge against
social risk. In a regular economy with two individual states and
identical preferences, even if agents have different probabilities,
there is always an Arrow-Debreu equilibrium (p*,z*) in E which
is achievable within the incomplete economy E, with the intro-
duction of A mutual insurance contracts and A statistical
securities

" This follows from Dierker (1982), p. 807, noting that his condition D is implied by our
assumption that preferences are strictly increasing (see Dierker's remark following the
statement of property D on p. 799) .
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Proof Consider first the case where all households have the
same probabilities, that is, II' = I1i = II. By Proposition 1, an
Arrow-Debreu equilibrium of E has the same prices po* = p*
and the same consumption vectors zho = zh, for each h, at each
social state owith r(o) = r. Define S2(r) as the set of social states
mapping to a given statistical state r, that is, Q(r) = {o e 52 :
r(o) = r} . The budget constraint equation is

p* (Zh - eh) = Y P, (ZhA
- eh.)

a
_ ~p*

	

(Z:kv
-

eh .,)
= 0

r oet2(r~

Individual endowments depend on individual states and not on
social states, so that eh, = eh,(,) = eh, . Furthermore, by Proposition
1 equilibrium prices depend on r and not on o, so that for each
r the equilibrium consumption vector Zho can be written as zhs .
The individual budget constraint is therefore 2:rpi_Ys(r)(zhs - ehs),
where summation over s(r) indicates summation over all indi-
vidual states s that occur in any social state leading to r, that is,
that are in the set Q(r) . Let #Q(r) be the number of social states
in Q(r) . As IIs,r = rs is the proportion of households in state s
within the statistical state r, we can finally rewrite the budget
constraint equation (4.2) of the household h as :

#Q(r)Jpr*Y,#Q(r)II+(z,,s - eh, ) = 0
r s

Using equation (3.1), the household's maximization problem
can therefore be expressed as :

max

	

11,Uh(zh,,) subject to (A.1)

~(z,*, - eh ) = 1(zh - ehs~a)1 = 0,

	

b'o e 52

and the equilibrium allocation z,*, by definition solves this
problem. Similarly, we may rewrite the market clearing condi-
tion (4.5) as follows:

Rewriting the market clearing condition (4.3) in terms of statis-
tical states r, and within each r, individual states s, we obtain
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rs H(zh - es ) = 0,

	

b'r eR

	

(A.2)
s

or equivalently

~II,J r H(zh - eh ) = 0,

	

tlr e R

Using these relations, we now show that anyArrow-Debreu
equilibrium allocation z* = (zhr) is within the budget constraints
(5.2) of the economy E, for each 6 e 52, provided that for each
o e 0 we add the income derived from a statistical security
Ar,r = r(6), and, given r(o), the income derived from mutual or
contingent insurance contracts ms = m(v)r(a), s = 1, . . . , S. We
introduce A statistical securities and LA mutual insurance con-
tracts in the general equilibrium economy with incomplete
markets E,. The quantity of the securityA r purchased by house-
hold h in statistical state r, when equilibrium prices are p*, is

a
h* =Y~r

	

sIr pr

	

zhr - ehs
s

(A.3)

The quantity a;* has a very intuitive interpretation. It is the
expected amount by which the value of equilibrium consump-
tion exceeds the value of endowments, conditional on being in
statistical state r. So where the law of large numbers applies, the
statistical securities purchased deliver enough to balance a
household's budget in each statistical state. Otherwise, differ-
ences between the average and each individual state are taken
care of by the mutual insurance contracts. Note that equation
(A.2) implies that the total amount of each security supplied is
zero, that is, shah" = 0 for all r, so that this corresponds to the
initial endowments of the incomplete economy E, . Furthermore,
Grah+ = 0 by (A.1), so that each household h is within herlhis
budget in E, .
We nowintroduce amutual insurance contract as follows. The

transfer made by individual h in statistical state r and individual
state s, when prices are p*, is

h* _ * *

	

)

	

h*msr

	

- pr zhr - ehr

	

- ar

	

(A.4)

Note that, as remarked above, ms; is just the difference between
the actual income-expenditure gap, given that individual state s
is realized, and the expected income-expenditure gap a;'' in sta-
tistical state r, which is covered by statistical securities. In each
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statistical state r, the sum over all h and s of all transfers ms;

equals zero, that is, the insurance premia match exactly the pay-
ments. For any given r,

lHrlsl rmsr = JH11s1rPr (zhr - ehs) - IHa r IIIsl r =
h .r

	

h,s

	

h s

(A.5)

because ~srIs,r = 1. Therefore, the {ms; } meet the definition of
mutual insurance contracts. Finally, note that with N spot
markets, A statistical securities far} and mutual insurance con-
tracts *114

b'oe S2 with r(o) = r, s = s(o)

so that equation (5.2) is satisfied for each os S2 . This establishes
that when all households have the same probabilities over social
states, all Arrow-Debreu equilibrium allocation z* of E can be
achieved within the incomplete markets economy EI when A
securities and A mutual insurance contracts are introduced into
E,, and completes the proof of the first part of the proposition
dealing with common probabilites.

Consider now the case where the economy E is regular, dif-
ferent households in E have different probabilities over social
states but have the same preferences, and S = 2. By Proposition
2, we know that within the set of equilibrium prices there is one
p* in which at all social states o e 52(r) for a given r, the equi-
librium prices are the same, that is, pQ* = p* In particular, if E
has a unique equilibrium (p*,z*), it must have this property. It
follows from the above arguments that the equilibrium (p*,z*)
must maximize (3.1) subject to (A.1) . Note, however, that now
for the same r, zksr may be different from z*,r when s * s' . Now
define the quantity of the security Ar purchased by a household
in the statistical state r by

h* - Y i

	

*( *

	

h)
ar

	

HsrPr zhsr - es
s

(A.6)

(A.7)

and the mutual insurance transfer made by a household in sta-
tistical state r and individual state s, by

h*

	

* (

	

*

	

h)

	

h*
msr

	

=Pr zhsr - eh

	

- ar (A.8)
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As before, ~,a",'= 0 and for any given r, E,,,,IIS'i,Hms~ = E,,~,rSHms;
= 0, so that the securities purchased correspond to the initial
endowments of the economy E, and at any statistical state the
sum of the premia and the sum of the payments of the mutual
insurance contracts match, completing the proof.

	

QED.
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