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3.5. Financial Markets for Unknown Risks*

1. Introduction

New risks seem to be an unavoidable in a period of rapid change. The last few
decades have brought us the risks of global warming, nuclear meltdown, ozone
depletion, failure of satellite launcher rockets, collision of supertankers, AIDS
and Ebola.! A key feature of a new risk, as opposed to an old and familiar
one, is that one knows little about it. In particular, one knows little about the
chances or the costs of its occurrence. This makes it hard to manage these
risks: existing paradigms for the rational management of risks require that
we associate probabilities to various levels of losses. This poses particular
challenges for the insurance industry, which is at the leading edge of risk
management. Misestimation of new risks has lead to several bankruptcies in
the insurance and reinsurance businesses.? In this paper we propose a novel
framework for providing insurance cover against risks whose parameters are
unknown. In fact many of the risks at issue may be not just unknown but
also unknowable: it is difficult to imagine repetition of the events leading
to global warming or ozone depletion, and, therefore, difficult to devise a
relative frequency associated with repeated experiments.

A systematic and rational way of hedging unknown risks is proposed here,
one which involves the use of securities markets as well as the more traditional
insurance techniques. This model is quite consistent with the current evolution
of the insurance and reinsurance industries, which are beginning to explore the
securitization of some aspects of insurance contracts via Act of God bonds,
contingent drawing facilities, catastrophe futures and similar innovations. In
fact, our model provides a formal framework within which such moves can
be evaluated. An earlier version of this framework was presented in [6];
Chichilnisky [3] gives a more industry-oriented analysis.

This merging of insurance and securities market is not surprising: tradi-
tionally economists have recognized two ways of managing risks. One is risk

* We are grateful to Peter Bernstein, David Cass and Frank Hahn for valuable comments on
an earlier version of this paper.
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pooling, or insurance, invoking the law of large numbers for independent and
identically distributed (IID) events to ensure that the insurer’s loss rate is
proportional to the population loss rate. This will not work if the population
loss rate is unknown. The second approach is the use of securities markets,
and of negatively correlated events. This does not require knowledge of the
population loss rate, and so can be applied to risks which are unknown or not
independent. In fact, securities markets alone could provide a mechanism for
| hedging unknown risks by the appropriate definition of states, but as we shall
see below this approach requires an unreasonable proliferation of markets.
Using a mix of the two approaches can economize greatly on the number
of markets needed and on the complexity of the institutional framework. In
the process of showing this, we also show that under certain conditions the
market equilibrium is anonymous in the sense that it depends only on the
distribution of individuals across possible states, and not on who is in which
state.

The reason for using two types of instrument is simple. Agents face two
types of uncertainty: uncertainty about the overall incidence of a peril, i.e.,
how many people overall will be affected by a disease, and then given an
overall distribution of the peril, they face uncertainty about whether they will
be one of those who are affected. Securities contingent on the distribution of
the peril hedge the former type of uncertainty: contingent insurance contracts
hedge the latter.

" Our analysis implies that insurance companies should issue insurance con-
tracts which depend on the frequency of the peril, which we call a statistical
state. The insurance companies should offer individuals an array of insur-
ance contracts, one valid in each possible statistical state. Insurance contracts
are, therefore, contingent on statistical states. Within each statistical state, of
course, probabilities are known. Therefore, companies are writing insurance
only on known risks, something which is actuarially manageable. Individuals
then buy the insurance that they want between different statistical states via
the markets for securities that are contingent on statistical states. The follow-
ing is an illustration for purchasing insurance against AIDS, if the actuarial
risks of the disease are unknown. One would buy insurance against AIDS
by (1) purchasing a set of AIDS insurance contracts each of which pays off
only for a specified incidence of AIDS in the population as a whole, and
(2) making bets via statistical securities on the incidence of AIDS in the pop-
ulation. Likewise, one would obtain cover against an effect of climate change
by (1) buying insurance policies specific to the risks faced at particular levels
of climate change, and (2) making bets on the level of climate change, again
using statistical securities. The opportunity to place such bets is currently pro-
vided in a limited way by catastrophe futures markets which pay an amount
depending on the incidence of hurricane damage.

The present paper draws on recent findings of Chichilnisky and Wu [5] and
Cass et al. [4], both of which study resource allocation with individual risks.
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Both of these papers develop further Malinvaud’s [15, 16] original formulation
of general equilibrium with individual risks, and Arrow’s [1] formulation of
the role of securities in the optimal allocation of risk-bearing. Our results are
valid for large but finite economies with agents who face unknown risks and
who have diverse opinions about these risks: in contrast, Malinvaud’s results
are asymptotic, valid for a limiting economy with an infinite population, and
deal only with a known distribution of risks. Our results use the formulation
of incomplete asset markets for individual risks used to study default in [5,
section 5.c]. The risks considered here are unknown and possibly unknowable,
and each individual has potentially a different opinion about these risks, while
Chichilnisky and Wu [5] and Cass et al. [4] assume that all risk is known.

2. Notation and Definitions

Denote the set of possible states for an individual by S, indexed by s =
1,2,...,8. Let there be H individuals, indexed by h = 1,2,...,H. All
households have the same state-dependent endowments: endowments depend
solely on the household’s individual state s, and this dependence is the same
for all households. The probability of any agent being in any state is unknown,
and the distribution of states over the population as a whole is also unknown.
A complete description of the state of the economy, called a social state,
is a list of the states of each agent. There are S¥ possible social states. A
social state is denoted o : it is an H-vector. The set of possible social states
is denoted 2 and has SH elements. A statistical description of the economy,
called a statistical state, is a statement of the fraction of the population in each
state: it is an S-vector. There are (H;fl"l
social states map into a given statistical state. For example, if in one social
state you are well and I am sick and in another, I am well and you are sick,
then these two social states give rise to the same statistical state. Intuitively,
we would not expect the equilibrium prices of the economy to differ in these
two social states. One of our results shows that under certain conditions, the
characteristics of the equilibrium are in fact dependent only on the statistical
state.

How does the distinction between social and statistical states contribute
to risk management? Using the traditional approach, we could in principle
trade securities contingent on each of the S¥ social states. Clearly this would
require a large number of markets, a number which grows rapidly with the
number of agents. The institutional requirements can be greatly simplified.
When the characteristics of the equilibrium depend only on the statistical
state, one can trade securities which are contingent on statistical states, i.e.,
contingent on the distribution of individual states within the population, and
still attain efficient allocations. We will trade securities contingent on whether

statistical states. Clearly many
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4 or 8% of the population are in state 5, but not on which people are in this
state. Such securities, which we will call statistical securities, plus mutual
insurance contracts also contingent on the statistical state, lead (under the
appropriate conditions) to an efficient allocation of risks. A mutual insurance
contract contingent on a statistical state pays an individual a certain amount
in a given individual state if and only if the economy as a whole is in a given
statistical state.

Let 25, denote the quantity of good j consumed by household 4 in social
state o : 2p, is an N-dimensional vector of all goods consumed by A in social
state 7, 2hy = Zjhg» § = 1,..., N and 25 is an N.S¥-dimensional vector of
all goods consumed in all social states by h, zp, = 25,0 € Q.3

Let s(h,o) be the state of individual A in the social state o, and r,(o)
be the proportion of all households for whom s(h,o) = s. Let r(0) =
r1{(c),...,rs(o) be the distribution of households among individual states
within the social state o, i.e., the proportion of all individuals in state s
for each s. r(o) is a statistical state. Let R be the set statistical states, i.e.,
of vectors (o) when o runs over . R is contained in S’, the product of

+S5-1

I S-dimensional simplices, and has (H 51 ) elements.

IT» is household h’s probability distribution over the set of social states
€, and IT? denotes the probability of state 0. Although we take social states
as the primitive concept, we in fact work largely with statistical states. We,
therefore, relate preferences, beliefs and endowments to statistical states. This
is done in the next section: clearly any distribution over social states implies
a distribution over statistical states.

The following anonymity assumption is required:

r(o) = r(o’) = It =11k,

This means that two overall distributions o and o’ which have the same
statistical characteristics are equally likely. Then II? defines a probability
distribution IT? on the space of statistical states R. II? can be interpreted, as
remarked above, as h’s distribution over possible distributions of impacts in
the population as a whole. The probability that a statistical state r obtains and
th;altt sir?ultaneously, for a given household h a particular state s also obtains,
3., is

o, =IPr, with > I% =IIM (1)
8§

The probability IT? that, for a given A, a particular individual state s obtains
is, therefore, given by
H’; = Z Hf Ts,
r€ER
where 7, is the proportion of people in individual state s in statistical state .
Note that we denote by IT" _ the conditional probability of household / being

sir
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in individual state s, conditional on the economy being in statistical state r.
Clearly >, Hglr = 1. Anonymity implies that

H?h‘ =Ts,
i.e., that the probability of anyone being in individual state s contingent on
the economy being in statistical state r is the relative frequency of state s
contingent on statistical state r.

3. The Behavior of Households

Let ! be the endowment of household  when the individual state is s. We
assume that household » always has the same endowment in the individual
state s, whatever the social state. We also assume that all households have the
same endowment if they are in the same individual state: endowments differ,
therefore, only because of differences in individual states. This describes the
risks faced by individuals.

Individuals have von Neumann—Morgenstern utilities:

Wh(zn) = 3 T U (zno).

'This definition indicates that household / has preferences on consumption

which may be represented by a “state separated” utility function Wh defined
from elementary state-dependent utility functions.

We assume like Malinvaud [15] that preferences are separable over sta-
tistical states. This means that the utility of household h depends on ¢ only
through the statistical state r(c). If we assume further that in state o house-
hold h takes into account only its individual consumption, and what overall
frequency distribution 7(o) appears, and nothing else, then its consumption
plan can be expressed as 2! = zps: its consumption depends only on its
individual state s and the statistical state r. Summation with respect to social
states o in the expected utility function can now be made first within each
statistical state. Hence we can express individuals’ utility functions as:

wh (2he) = Z ngUh (zhsr ) @)

which expresses the utility of a household in terms of its consumption at
individual state s within a statistical state r, summed over statistical states.
This expression is important in the following results, because it allows us
to represent the utility of consumption across social states o as a function
of statistical states r and individual states s only. The functions U? are
assumed to be C2, strictly increasing, strictly quasiconcave, and the closure
of the indifference surfaces {U"}~!(z) C int(RN*) for all z € R*. The

probabilities II? are in principle different over households.
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4. Efficient Allocations

Let p* be a competitive equilibrium price vector of the Arrow—Debreu econo-
my E with markets contingent on all social states® and let z* be the associated
allocation. We will as usual say that 2* is Pareto efficient if it is impossible to
find an alternative feasible allocation which is preferred by at least one agent
and to which no agent prefers 2*. Let p}; and 2 be the components of p* and
z*, respectively, which refer to goods contingent on state o.

We now define an Arrow—Debreu economy E, where markets exists con-
tingent on an exhaustive description of all states in the economy, i.e. for
all social states o € Q. We, therefore, have NS¥ contingent markets. An
Arrow-Debreu equilibrium is a price vector p* = (p,),ps € RN*t,0 € Q,
and an allocation z* consisting of vectors 2} = (z},),2;, € RVT,0 €
Q,h =1,...,H such that for all h, 2 maximizes

Wh (z1) = 3 TeU (24,) 3)
subject to a budget constraint
p(zh—en) =0 “)
and all markets clear:
Y (27 —en) =0. (5)
3

Proposition 1 considers the case when households agree on the probability
distribution over social states, this common probability being denoted by II.
It follows that they agree on the distribution over statistical states. It shows
that in this case, the competitive equilibrium prices p* and allocations z* are
the same across all social states o leading to the same statistical state .5

PROPOSITION 1. When agents have common probabilities, i.e., I* = II/
Vh, 3, then equilibrium prices depend only on statistical states. Consider an
Arrow—-Debreu equilibrium of the economy E, p* = (p}), z* = (2}), 0 € Q.
For every state o leading to a given statistical stater, i.e., such thatr (o) = r,
equilibrium prices and consumption allocations are the same, i.e., there exists
a price vector p; and an allocation z; such thatVo : r (o) =r, p}, = p} and
2} = 2}, where pt € RN* and 2t € RN! depend solely on r.
Proof. In the Appendix.

DEFINITION. An economy F is regular if at all equilibrium prices in E the
Jacobian matrix of first partial derivatives of its excess demand function has
full rank [11]. Regularity is a generic property [10, 11].

We now consider the general case, which allows for IT* # IFV if A # j.
Proposition 1 no longer holds: the reason is that households may not achieve
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full insurance at an equilibrium. However, Proposition 2 states that if the
economy is regular, if all households have the same preferences and if there
are two individual states, there is always one equilibrium at which prices are
the same at all social states leading to the same statistical state. This confirms
the intuition that the characteristics of an equilibrium should not be changed
by a permutation of individuals: if I am changed to your state, and you to
mine, everyone else remaining constant, then provided you and I have the
same preferences, the equilibrium will not change.

PROPOSITION 2. An Arrow-Debreu equilibrium allocation of the economy
E (p*, z*) is not fully insured if II" + TI* for some households h,k with
UM # U* in (2). In particular, household h has a different equilibrium
allocation across social states o) and oy with r(01) = 7(02). When E is
a regular economy, all agents have the same utilities,” and there are two
individual states, then one of the equilibrium prices p* must satisfy p;, = pg,
Jor all oy,02 with T (01) =7 (02).
Proof. In the Appendix.

5. Equilibrium in Incomplete Markets for Unknown Risks

Consider first the case where there are no assets to hedge against risk, so

that the economy has incomplete asset markets. Individuals cannot transfer

income to the unfavorable states. Examples are cases when individuals are
not able to purchase hurricane insurance, as in some parts of the south eastern
United States and in the Caribbean. Market allocations are typically inefficient
in this case, since individuals cannot transfer income from one state to another
to equalize welfare across states. Which households will be in each individual
state is unknown. Each individual has a certain probability distribution over
all possible social states o, II*. In each social state o each individual is
constrained in the value of her/his expenditures by her/his endowment (which
depends on the individual state s (h, o) in that social state). In this context, a
general equilibrium of the economy with incomplete markets E; consists of
a price vector p* with N.SH components and H consumption plans z}; with

NSH components each, such that 2z} maximizes Wh (z):

wh (zn) = Z Hf,‘ Uh (Zho) ©6)
subject to
Do (2hs —€nro) =0 foreach o€ M

and

H
D (2n—en) =0. ®)
h=1
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The above economy E7y is an extreme version of an economy with incom-
plete asset markets (see, e.g., [13]) because there are no markets to hedge
against risks: there are S¥ budget constraints in (7).

6. Efficient Allocations, Mutual Insurance and Securities

In this section we study the possibility of supporting Arrow—Debreu equi-
libria by combinations of statistical securities and insurance contracts, rather
than by using state contingent contracts. As already observed, this leads to
a very significant economy in the number of markets needed. In an econ-
omy with no asset markets at all, such as Ej, the difficulty in supporting
an Arrow—Debreu equilibrium arises because income cannot be transferred
between states. On the basis of Propositions 1 and 2, we show that households
can use securities defined on statistical states to transfer into each such state
an amount of income equal to the expected difference between the value of
Arrow—-Debreu equilibrium consumption and the value of endowments in that
state. The expectation here is over individual states conditional on being in a
given statistical state. The difference between the actual consumption-income
gap given a particular individual state and its expected value is then covered
by insurance contracts. Recall that A is the binomial number A = (H;fl— 1) .
THEOREM 1. 4ssume that all households in E have the same probability
I over the distribution of risks in the population. Then any Arrow—Debreu
equilibrium allocation (p*, z*) of E (and, therefore, any Pareto Optimum) can
be achieved within the general equilibrium economy with incomplete markets
Er by introducing a total of I.A mutual insurance contracts to hedge against
individual risk, and A statistical securities to hedge against social risk. In a
regular economy with two individual states and identical preferences, even if
agents have different probabilities, there is always an Arrow—Debreu equi-
librium (p*, z*) in E which is achievable within the incomplete economy E;
with the introduction of 1.A mutual insurance contracts and A statistical
securities.
Proof. In the Appendix.

6.1. Market Complexity

We can now formalize a statement made before about the efficiency of the
institutional structure proposed in Theorem 1 by comparison with the standard
Arrow-Debreu structure of a complete set of state-contingent markets. We
use here complexity theory, and in particular the concept of NP-completeness.
The key consideration in this approach to studying problem complexity is how
fast the number of operations required to solve a problem increases with the
size of the problem.
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DEFINITION. If the number of operations required to solve a problem must
increase exponentially for any possible way of solving the problem, then the
problem is called “intractable” or more formally, NP-complete. If this num-
ber increases polynomially, the problem is tractable. Further definitions are
in [12].

The motivation for this distinction is of course that if the number of operations
needed to solve the problem increases exponentially with some measure of
the size of the problem, then there will be examples of the problem that
no computer can or ever could solve. Hence there is no possibility of ever
designing a general efficient algorithm for solving these problems. However,
if the number of operations rises only polynomially then it is in principle
possible to devise a general and efficient algorithm for the problem.
Theorem 2 investigates the complexity of the resource allocation problem
in the Arrow-Debreu framework and compares this with the framework of
Theorem 1. We focus on how the problem changes as the economy grows
in the sense that the number of households increases, and consider a very
simple aspect of the allocation problem, which is as follows. Suppose that
the excess demand of the economy Z (p) is known. A particular price vector
p* is proposed as a market clearing price. We wish to check whether or not
it is a market clearing price. This involves computing each of the coordinates
of Z (p) and then comparing with zero. This involves a number of operations
proportional to the number of components of Z (p); we, therefore, take the
rate at which the dimension of Z (p) increases with the number of agents to be

" a measure of the complexity of the resource allocation problem. In summary:

we ask how the difficulty of verifying market clearing increases as the num-
ber of households in the economy rises. We show that in the Arrow—Debreu
framework this difficulty rises exponentially, whereas in the framework of
Theorem 1 it rises only polynomially.

THEOREM 2. Verifying market clearing is an intractable problem in an
Arrow—Debreu economy, i.e., the number of operations required to check if a
proposed price is market clearing increases exponentially with the number of
households H. However, under the assumptions of Theorem 1, in the economy
Ey supplemented by 1.A mutual insurance contracts and A statistical secu-
rities, verifying market clearing is a tractable problem, i.e., the number of
operations needed to check for market clearing increases only polynomially
with the number of households.

Proof. The number of operations required to check that a price is market
clearing is proportional to the number of market clearing conditions. In E
we have NS markets. Hence the number of operations needed to check if
a proposed price is market clearing must rise exponentially with the number
of households H. Consider now the case of E supplemented by I.A mutual
insurance contracts and A securities. Under the assumptions of Theorem 1,
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by Propositions 1 and 2, we need only check for market clearing in one social
state associated with any statistical state, as if markets clear in one social state
leading to a certain statistical state they will clear in all social states leading to
the same statistical state. Hence we need to check a number of goods markets
equal to N.A, plus markets for mutual insurance contracts and securities.

Now

H+S5+1
a=("52) =eas),

where ® (H, §) is a polynomial in H of order (S — 1). Hence A itself is a
polynomial in H whose highest order term depends on H~!, completing the
proof. ]

7. Catastrophe Futures and Bundles

We mentioned in the introduction that securities contingent on statistical
states are already traded as “catastrophe futures” on the Chicago Board of
Trade, where they were introduced in 1994. Recently, hurricane bonds and
earthquake bonds have been introduced, additional examples of statistical
securities. (The concept was discussed by Chichilnisky and Heal in 1993
[6].) Catastrophe futures are securities which pay an amount that depends
on the value of an index of insurance claims paid during a year. One such
index measures the value of hurricane damage claims: others measure claims
stemming from different types of natural disasters. The value of hurricane
damage claims depends on the overall incidence of hurricane damage in the
population, but is not of course affected by whether any particular individ-
ual is harmed. It, therefore, depends, in our terminology, on the statistical
state, on the distribution of damage in the population, but not on the social
state. Catastrophe futures are thus financial instruments whose payoffs are
conditional on statistical state of the economy: they are statistical securities.
According to our theory, a summary version of which appeared in [6] in 1993,
they are a crucial prerequisite to the efficient allocation of unknown risks. And
as the incidence and extent of natural disaster claims in the U.S. has increased
greatly in recent years, risks such as hurricane risks are in effect unknown
risks: insurers are concerned that the incidence of storms may be related to
trends in the composition of the atmosphere and incipient greenhouse warm-
ing. However, catastrophe futures are not on their own sufficient for this:
they do not complete the market. Mutual insurance contracts, as described
above, are also needed. These provide insurance conditional on the value of
the catastrophe index. The two can be combined into “catastrophe bundles”,
see [3].
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8. Conclusions

We have defined an economy with unknown individual risks, and established
that a combination of statistical securities and mutual insurance contracts
can be used to obtain an efficient allocation of risk-bearing. Furthermore,
we have shown that this institutional structure is efficient in the sense that
it requires exponentially fewer markets that the standard approach via state-
contingent commodities. In fact, the state-contingent problem is “intractable”
with individual risks (formally, NP-complete) in the language of computation-
al complexity, whereas our approach gives a formulation that is polynomially
complex. This greatly increases the economy’s ability to achieve efficient
allocations. Another interesting feature of this institutional structure is the
interplay of insurance and securities markets involved. Its simplicity leads to
successful hedging of unknown risks and predicts some convergence between
the insurance and securities industries.

9. Appendix

PROPOSITION 1. When agents have common probabilities, i.e., TI" = IV
Vh, 4, then equilibrium prices depend only on statistical states. Consider an
Arrow—Debreu equilibrium of the economy E, p* = (p}), 2* = (2}),0 € Q.
For every state o leading to a given statistical stater, i.e., such thatr (o) =,

- equilibrium prices and consumption allocations are the same, i.e., there exists

a price vector p} and an allocation z; such thatNo :r (o) =, p; = pr and
2t = 2¥, where pt € RN* and 2} € RN! depend solely on r.

Proof. Consider o) and o, with r (1) = r(o3) = r. Note that the total
endowments of the economy are the same in ¢ and o3, both equal to s, =
Hrseps (recall that eps = e, as endowments depend only on individual
states and not on household identities). Also, by the anonymity assumption,
I, = II,, = II,, where II, is the common probability of any social state in
the statistical state r. Let I, be the probability of being in social state o
given statistical state 7. By the anonymity assumption on probabilities this is
just 1/#Q;. We now show that for every household h, z;, = z;,,, due to
the Pareto efficiency of Arrow—Debreu equilibria. Let Q, = {¢ : r(¢) = ¢}.
Let z* = (z},,), and assume in contradiction to the proposition that there
are oy and o, € (2, such that z;, # z},, for some h. Define Ezp, =

Yoear Zhollor = (1/#2) Lyeq, z;, - This is the expected value of (z},)
given that the economy is in the statistical state r. Now
1
S B = g sl = X
h h T e, h

so that E'zy,, is a feasible consumption vector for each h in the statistical state
r. Next we show that by strict concavity, moving for each h and each o from
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z,w (which depends on ) to Ezp, (which is the same for all o € (2), is a
strict Pareto improvement. This is because

wh (24,) ZHUU” Zhy) ZH S ..U (24,) -
o€N

By strict concavity of preferences

ZHT Z Ha-'.,- Zha.

gefl,

ZH > Ut (Z Zhe ,,,) Zn > UM (Bzn,).
o€Qr A0 o€Q
Since Ezp, is Pareto superior to z* with z,w z,w , such a z* cannot be
an equilibrium allocation. Hence z;, = z;,, = 2, forall h = 1,...,H.
Note that this implies that in an equlhﬁnum household A consumes the same
allocation z;,. across all individual states s in a given statistical state, i.e. it
achieves full insurance. Since p* supports the equilibrium allocation 2*, and
Zhy, = Zhg, it follows that p; = pg, when r (01) = r (02), because utilities
are assumed to be C? and, in particular, to have a unique gradient at each
point which, by optimality, must be collinear both with p7, and with pg., i.e.
Py = paz = p, This implies that at an equilibrium, household A faces the
same prices p; at any o with r (o) = r. O

R S . A RN
o e P T e i e

PROPOSITION 2. An Arrow-Debreu equilibrium allocation of the economy
E (p*, *) is not fully insured if I* # I for some households h,k with
Uh &£ U*. In particular, household h has a different equilibrium allocation
across social states oy and o3 with r (o)) = r(03). When E is a regular
economy, all agents have the same utilities,® and there are two individual
states, one of the equilibrium prices p* must satisfy p; = p, for all 01,0
with r (o1) = r(03).

Proof Suppose that household 4 is in fact fully insured so that 2}, = Zhers
for all o! and o2 with 7 (01) = r(o07). Household h’s consumption levels
are ysl, and ysZr where s; = s(h,01) and s3 = s(h, 02). By assumption we
s have y;,, = y§,,. Now from (2) household A’s marginal rate of substitution
e between consumption in states o) and o is Hsllr /Hs2 Ir Suppose also that
¢ household &, k& # h, is fully insured. Then by the same argumentk s margmal
rate of substitution between consumption in states o and o5 is II¢ silr JIIE salr
But if different households have different probability distributions this is a
contradiction as both face the same price vector.

Assume now that F is regular, that all agents have the same preferences,
and that S = 2. Consider two social states o; and o, with r (o;) = r (03),
and such that o, differs from o, only on the individual states of the two
households A and k; which are permuted, i.e., s (h;,01) = 8(hy,0;) and

sy smasmsion:
R
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s(ha,01) = s(hi,02) . Assume that there exists an equilibrium price for E,
p* € RVS¥ such that its components in states o1 and o are different, i.e.
%, # p%,. Define now a new price p; € RS H  called a “conjugate” of p*,
which diﬁ'ers from p* only in its coordinates in states o1 and o2, which are
permuted as follows: V o # 01,02, B = P}, Dy, = P, and g, = py,. We
shall now show that 5* is also an equilibrium price for the economy E. At p*,
household #, has the same endowments and faces the same prices in states
o1 and o, as it did at states o, and o respectively at price p*; at all other
states o € 2, h; faces the same prices and has the same endowments facing
p* and facing 7*. The same is true of household h;. Furthermore, h{ and h;
have the same utilities and probabilities at o} and o, because r (o1) = r(032)
and probabilities are anonymous. Therefore, the excess demand vectors of
h, in states o and o at prices p* equal the excess demand vectors of h;
in o, and o) respectively, at prices p*, and at all other states o € {2 the
excess demand vectors of h are the same at prices p* and p*. Reciprocally:
the excess demand vectors of h; in o] and o, at prices p* equal the excess
demand vectors of h; in o3 and o respectively at prices *, and in all other
states o, the excess demand vectors of h; are the same as they are with prices
p*. Formally:

Zhy0; (ﬁ*) = Zhy0y (P*) 1y Zhyo; (-ﬁ*) = Zhyo, (p*)
Zhyo, @) = Zhyoy (%) 1 2Ry (") = 20,0, (P7)

and Vo € Q,0 # o1,07:

zno (P*) = 2n,0 (B%)  2hyo (P") = 2ny0 (B7) -

The excess demand vectors of all other households b # k1, h; are the same
for p* and p*. Therefore, at p* the aggregate excess demand vector of the
economy is zero, so that 7* is an equilibrium. The same argument shows that
permuting the two components p;, , p;, of a price p* at any two social states
01,07 leading to the same statistical state 7 (o)) leads from an equilibrium
price p* to another equilibrium price p*. This is because if two social states
o1 and o, lead to the same statistical state and there are two individual states
sy and s; then there is a number k& > 0 such that k households who are in s,
in o are in $; in o3 and another & households who were in s; in o, are in
s; in o}, while remaining in the same individual states otherwise. These two
sets of k households can be paired. For every pair of households, the above
argument applies. Hence it applies to the sum of the demands, so that the new
price p* is an equilibrium.

Now consider any regular economy E with a finite number of equilibrium
prices denoted p7,...,p;. We shall show that there exists a j < k s.t. pj
assigns the same price vector to all social states o1, o, with r (0]) = 7 (032).
Start with p} : if p] does not have this property, consider the first two social
states o1, o3 with r (o) = r (03) and Pls, # Pls,- Define pj as the conjugate
of p] constructed by permuting the prices of the social states o; and o;. If




T
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Vi > 1, p;- = P}, then there are two price equilibria, i.e. & = 2; however,
since the number of price equilibria must be odd,” there must exist pj, with
Jj1 > 1, and p}, # pi. Consider now the conjugate of pj, with respect to the
first two social states o1, o2 which correspond to the same statistical state and
have different components in p} , and denote this conjugate 'f)“’fl. Repeat the
procedure until all equilibria are exhausted. In each step of tﬂls procedure,
two different price equilibria are found. Since the number of equilibria must
be odd, it follows that there must exist a j < & for which all conjugates of p;
equal p}: this is the required equilibrium which assigns the same equilibrium
prices p;,, = py, to all 01,07 with r (01) = 7 (02), completing the proof. O

THEOREM 1. Assume that all households in E have the same probability
II over the distribution of risks in the population. Then any Arrow—Debreu
equilibrium allocation (p*, 2*) of E (and, therefore, any Pareto Optimum) can
be achieved within the general equilibrium economy with incomplete markets
Er by introducing a total of 1. A mutual insurance contracts to hedge against
individual risk, and A statistical securities to hedge against social risk. In a
regular economy with two individual states and identical preferences, even if
agents have different probabilities, there is always an Arrow—Debreu equi-
librium (p*, 2*) in E which is achievable within the incomplete economy E
with the introduction of I.A mutual insurance contracts and A statistical
securities. o

Proof. Consider first the case where all households have the same probabil-
ities, i.e., II* = [I7 = II. By Proposition 1, an Arrow-Debreu equilibrium of
E has the same prices p;, = p; and the same consumption vectors zj;,, = 27,
for each A, at each social state o with r (o) = r. Define Q2 (r) as the set of social
states mapping to a given statistical state r,i.e. Q(r) = {c € Q : r (o) =1}.
The budget constraint (4) is

P (s —en) =20} (sho —ens) =308 Y (25— en) =0.

T oef)(r)

Individual endowments depend on individual states and not on social states,
so that ens = epg(s) = €ps; furthermore, by Proposition 1 equilibrium prices
depend on r and not on o, so that for each r the equilibrium consumption
vector 2, can be written as zj;. The individual budget constraint is, therefore,
22+ Pr 2 sr) (2ns — €ns), where summation over s (r) indicates summation
over all individual states s that occur in any social state leading to r, i.e. that
are in the set Q(r). Let #Q () be the number of social states in Q(r). As
I, = 75 is the proportion of households in state s within the statistical state
r, we can finally rewrite the budget constraint (4) of the household 4 as:

#Q(r))_pr > #Q (M) gy, (2hs — €rs) = 0. ©9)
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Using (2), the household’s maximization problem can, therefore, be expressed
as:
max Y _ I, U" (2hsr) subjectto (9)
8,r
and the equilibrium allocation 2}, by definition solves this problem. Similarly,
we may rewrite the market clearing condition (5) as follows:

> (2 —en) =D (2ho —ense)) =0, VoeQ.
h h
Rewriting the market clearing condition (5) in terms of statistical states r, and
within each r, individual states s, we obtain:

S roH (7, —€h) =0, VreR (10)
]
or equivalently:
S T H (4, —eh) =0, VreR.
8

Using these relations, we now show that any Arrow—Debreu equilibrium
allocation z* = (27,) is within the budget constraints (7) of the economy
E; for each o € (1, provided that for each 0 € 2 we add the income
derived from a statistical security A,,r = r (o), and, given r (¢), the income
derived from mutual insurance contracts m, = Mgy, $ = 1,...,5. We
introduce A statistical securities and /. A mutual insurance contracts in the
general equilibrium economy with incomplete markets £y. The quantity of the
security A, purchased by household 4 in statistical state r, when equilibrium
prices are p*, is

p= > Ipr (2 — ehs) - (11)
S

The quantity a™* has a very intuitive interpretation. It is the expected amount
by which the value of equilibrium consumption exceeds the value of endow-
ments, conditional on being in statistical state . So on average, the statistical
securities purchased deliver enough to balance a household’s budget in each
statistical state. Differences between the average and each individual state
are taken care of by the mutual insurance contracts. Note that (10) implies
that the total amount of each security supplied is zero, i.e., 3, a = 0 for
all r, so that this corresponds to the initial endowments of the mcomplete
economy E;. Furthermore, 3", a?* = 0 by (9), so that each household & is
within her/his budget in E;.

We now introduce a mutual insurance contract as follows. The transfer
made by individual A in statistical state r and individual state s, when prices
are p}, is:

mht = p} (24, — enr) — al™. (12)
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Note that, as remarked above, my is just the difference between the actual
income-expenditure gap, given that md1v1dual state s is realized, and the
expected income-expenditure gap a?* in statistical state r, which is covered
by statistical secuntles In each statlstlcal state r, the sum over all 4 and s
of all transfers m”* equals zero, i.e. the insurance premia match exactly the
payments: for any glven r,

ST HImE = > HILyp; (24, — ehs) Z Hal” Z I,
h,s h,s

=0 (13)

because Y-, IL;, = 1. Therefore, the {m!*} meet the definition of mutual
insurance contracts. Finally, note that w1th N spot markets, A statistical
securities {a,} and I mutual insurance contracts {m” }

Dr (z,’:, - eg) =mi+a¥, Vo€ Qwithr(o)=rs=35(c)(14)

so that (7) is satisfied for each o € (2. This establishes that when all households
have the same probabilities over social states, all Arrow—Debreu equilibrium
allocation 2* of F can be achieved within the incomplete markets economy
E; when A securities and 1. A mutual insurance contracts are introduced into
Ej, and completes the proof of the ﬁrst part of the proposition dealing with
common probabilities.

Consider now the case where the economy F is regular, different house-
holds in E have different probabilities over social states but have the same
preferences, and S = 2. By Proposition 2, we know that within the set of
equilibrium prices there is one p* in which at all social states o € Q(r) fora
given r, the equilibrium prices are the same, i.e. p} = p}. In particular, if £
has a unique equilibrium (p*, 2*), it must have this property. It follows from
the above arguments that the equilibrium (p*, 2*) must maximize (2) subject
to (9). Now define the quantity of the security A, purchased by a household
in the statistical state r by

ap* = .o} (2her — €) (15)
5

and the mutual insurance transfer made by a household in statistical state r
and individual state s, by

=pr (zl’;sr - e.,sl) - a':'l*' (16)
As before, Zr P = 0 and for any given r, ¥, I, Hml =
ShsTsH m®* = 0, so that the securities purchased correspond to the ini-

tial endowments of the economy E; and at any statistical state the sum of the
premia and the sum of the payments of the mutual insurance contracts match,
completing the proof. |
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Notes

1.

N pw

1.

11.

12.

A dealy viral disease.

Many were associated with hurricane Andrew which at $18 billion in losses was the most
expensive catastrophe ever recorded. Some of the problems which beset Lloyds of London
arose from underestimating environmental risks.

All consumption vectors are assumed to be non-negative.

See [16, p- 387, para. 1].

Defined formally below.

Related propositions were established by Malinvaud in an economy where all agents are
identical, and risks are known.

The condition that all agents have the same preferences is not needed for this result.
However, it simplifies that notation and the argument considerably. The general case is
treated in the working papers from which this article derives.

The condition that all agents have the same preferences is not needed for this result, but
simplifies the notation and the proof considerably. In the working papers from which this
article derives, the general case was covered.

This follows from Dierker [11, p. 807] noting that his condition D is implied by our
assumption that preferences are strictly increasing (see Dierker’s remark following the
statement of property D on p. 799).
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