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The geometry of implementation: a necessary and
sufficient condition for straightforward games*

Abstract . We characterize games which induce truthful revelation of the
players' preferences, either as dominant strategies (straightforward games) or
in Nash equilibria . Strategies are statements of individual preferences on R" .
Outcomes are social preferences . Preferences over outcomes are defined by
a distance from a bliss point . We prove that g is straightforward if and only if
g is locally constant or dictatorial (LCD), i.e ., coordinate-wise either a constant
or a projection map locally for almost all strategy profiles . We also establish
that : (i) If a game is straightforward and respects unanimity, then the map
g must be continuous, (ii) Straightforwardness is a nowhere dense property,
(iii) There exist differentiable straightforward games which are non-dicta-
torial . (iv) If a social choice rule is Nash implementable, then it is straight-
forward and locally constant or dictatorial .

In classical forms of resource allocation for public goods,' efficiency requires
accurate information about people's preferences . However, asking individuals
to reveal their preferences can lead to a game in which the truth may or may
not be the outcome. When is telling the truth the best strategy? Games in
which players' best moves are to say the truth, are called straightforward . This

* The first versions of these results were completed in 1979, and they were then revised
and extended in 1980 and 1981 . Versions were circulated as Essex working papers
under the titles "Incentives to Reveal Preferences", "Incentive Compatibility and Local
Simplicity" and "A Necessary and Sufficient Condition for Straightforwardness" .
Research support from NSF Grants . SES 79-14050, 92-16028 and 91-10460 and the
United Kingdom S.S.R.C . is gratefully acknowledged .
' Such as those proposed by Lindahl, Bowen and Samuelson .
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paper gives necessary and sufficient conditions for a game to be straight-
forward.

In the search for straightforward games, certain points are obvious . If
a player is a dictator, namely if the outcome is determined solely by her
preferences, then she has no incentive to misrepresent those preferences .
Likewise, if the outcome is constant, independent of the strategy chosen by the
player, then there is no incentive to misrepresent either.

The insight offered in this paper is that these two simple and appealing
cases serve as a basis for constructing all possible straightforward rules : within
a certain family of single peaked preferences defined on the choice space 93",
a rule is straightforward if, and only if, it is made up by "piecing together"
constant rules and dictatorial rules. Such rules are called locally constant or
dictatorial (LCD), and they can be very different indeed from dictatorial or
constant maps. However, locally they behave either like a constant function or
like a dictatorial function (a projection) almost everywhere . LCD rules have
a remarkably simple geometric structure .

The results presented here were developed between 1979 and 1981 2 and
have been circulated widely since them. They are based on an intuitive
geometric object : the preimage in strategy space of a given outcome . Our
approach is unique in that all of our results are proven by reference to this
geometric structure, and are valid for any Euclidean space . This geometric
structure has proven to be fruitful elsewhere as well : it was adopted later by
Saari [20] and by Rasmussen [19] in this volume, and it is also used in our
results on "strategic dictators' in Chichilnisky and Heal [12] and in the results
on strategic control in Chichilnisky [8] . We are able to do this because we
show (in Theorem 1) that any straightforward game with a convex range
(implied for example by respect of unanimity) must be continuous . We can
therefore work with continuous maps between Euclidean spaces .

Though simple in concept, locally constant or dictatorial (LCD) maps can
be quite complex: several examples are constructed here . LCD rules may
satisfy desirable features : they can be continuous and anonymous3 and also
respect unanimity.' These are the three axioms proposed by Chichilnisky
[6, 7] for characterizing desirable social choice rules .'

2 These results were widely circulated and presented at conferences and seminars from
1979 to 1982 .
s A function f(x 1 , x2, . . . , xn ) = y, f : V --+ SR, is

	

anonymous if f (x 1 , x2, . . . , x�) _
f(x,,,, xn2 , . . . ,xnn) where (Tc1, n2, . . . , nn) is a permutation of the integers
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to n .
A social choice rule with this property does not discriminate between agents on the
basis of their identity .
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f (x ,, x2, . . . , xn) = y,

	

f:Jl" __, Jl,

	

respects

	

unanimity

	

if
f(x,x, . . .,x)=XVX .
s Generally there exist no social choice rules satisfying Chichilnisky's three axioms, cf.
Chichilnisky [6, 7] . In our case they exist because we restrict the domain of preferences,
see also Chichilnisky and Heal [9] . These rules include various "generalized median"
rules, such as those of Moulin [18], which are extensions of the median rule by the
inclusion of non-existent voters, and those of Barbera, Gul and Stacchetti [2], ele-
gantly defined by left- and right-coalition systems .
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The attractive properties of these LCD rules are bought at a high price :
there are very few such rules . Formally, LCD rules are nowhere dense in the
space of continuous functions . Straightforward games are therefore not robust.'

In addition to simplicity, our characterization has clear advantages over
alternative descriptions of straightforward rules in terms of medians and
phantom voters' . LCD rules can be extended naturally to infinite popula
tions, for which medians are not well-defined (see Heal [15]) . Another ad-
vantage is that it provides a basis for analyzing the incentive-compatibility
properties of Rawlsian rules . These have been widely studied and have the
property that (locally) one individual' is dictatorial, the person who is in the
worst position, and the rule is constant with respect to the preferences of all
others . Therefore Rawlsian rules are straightforward .

Our results extend also to Nash equilibrium strategies . We show that
being LCD is necessary and sufficient for truthful revelation to be a Nash
equilibrium . So the apparently less demanding concept of Nash implemen-
tation in fact brings little in the way of greater generality .

We work with generalizations of single-peaked preferences,' in our case
the indifference curves are families of ellipsoids . Choice spaces are linear
subspaces of a Euclidean space." The messages or strategies of the players are
statements of their characteristics : these are either vectors in R" + (bliss points
of the single peaked preferences), or alternatively, preferences over R". Out-
comes, or payoffs, are vectors in R" . Each player seeks through strategic
behavior to attain an outcome as close as possible to his or her optimal
outcome or bliss point, according to some distance on R" .

The paper is organized as follows : the following section introduces the
results and provides geometric examples . Section three proves rigorously the
results on straightforwardness, and section four does likewise for Nash imple
mentation with separable regular games." The main part of the paper uses
only geometric arguments; longer proofs are in the Appendix.

2 . The geometry of implementation

This section gives an introduction to the subject by providing examples and
simple geometric interpretations of the results .

6 A related fact was noted by Guesnerie and Laffont [13] in a different framework .
' Moulin [18] studies straightforwardness in terms of generalized median rules . His
results apply only to one-dimensional choice spaces. Border and Jordan [4] work with
so-called "phantom voters" . They study voting rules where the population of voters is
enlarged by imaginary or phantom voters .
' Not always the same individual, but always the individual occupying the position of
being worst off.
9 The same framework has been used by Moulin, Barbera Gul and Stacchetti, Barbera
et al . [3], Border and Jordan [4] and van der Stel [23] . For an excellent recent review
of this literature see van der Stel [23] .
to Unlike Barbera et al ., who work with discrete sets of choices .
"Separable regular games are defined fully below : separability means that
g : 91'" - 3i', g = (g 1 , 92, . . . , gm). Regularity is a rank condition on the derivative of
the game form .
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We start with games where the players' characteristics are real numbers;
later we consider more general cases. There are k >_ 2 players . Each player
wishes to achieve an outcome in the real line which is as close as possible (in
') to this or her true "bliss point" . Preferences are therefore represented by
utility functions that are symmetric around a maximum value in 9i, the "bliss
point" . S is the space of strategies and A the space of outcomes. A game form
g : Sk --+ A (also called a "rule") is a function which associates with each k-tuple
of agents' strategies an outcome in A. A game g respects unanimity if
g(p 1, . . . , PO = y EA when for all i = l , . . . , k the preferences pi, have the same
bliss point y. The game g just defined is called straightforward if the announce-
ment of one's true characteristic is always a dominant strategy for each
player . 12

There is an equivalent expression for straightforward games, which we
present here for clarity but which is unnecessary otherwise; one says that
a game "implements" a social choice rule if the equilibria of the game are the
outcomes of the social choice function applied to "true" individual prefer-
ences . Thus a straightforward game implements its game form g as a social
choice function. The notion of equilibrium can be based on dominant strat-
egies, or be a Nash equilibrium : both are considered in this paper.

A game which is not straightforward is called manipulable : in such games
players have incentives to lie .

2.1 . Manipulable rules

Standard games, such as average rules, are manipulable . It will help the
intuition to see why . Consider the game as defined above, where

g : [0, 1] 2 _ [0, 1],

	

g(rl, r2) = Ar l + (1 - A)r2, A E [0, 1] .

Figure 1 represents this game form: the slanted lines represent the hypersurfa-
ces of the game form function g, g -1 (r) = {(rl, r2 ) : g(rl , r2 ) = r} . The horizon-
tal axis of the square are the strategies of player one; the vertical of player 2 .

This game has an interesting characteristic : for any strategy s2 of player
two within the segment S, there exists a strategy for player one denoted r(s2),
which can attain his/her preferred outcome or "bliss point" r l , i .e ., g(r(s2),
s2 ) = r l . It suffices to choose r(s2) so that (r(s2 ), s2 E g -1 (r) . Furthermore, this
optimal strategy for player one, r(s2 ), varies with s2 . Therefore, stating the true
characteristic r l is generally not the best strategy for player one. In fact, it is
easy to check that in general this game has no dominant strategies . This game is
manipulable .

It is clear from the above discussion that, to avoid manipulability, one must
require that the optimal response r(s2) does not vary locally with s2 . This
implies, in the diagram of the game g, that the hypersurfaces g -1 (r) are either
(1) vertical, in which case r(s) is always the same as s varies within a neighbor-
hood, or (ii) horizontal with r(s) - s, so that r cannot affect the outcome and
s has no incentive to lie, or else (iii) that the game g has large indifference

' 2 A strategy r is dominant for player one if for all s in S g(r, s) = max, E s (g(t, s)),

according to player one's preference .
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Fig. 1 . The game g(r l , r 2 ) = Ar, + (1 - A)r2, ~ c [0, 11

g(a,b)=min(a,b)

	

Strategy set of player 1

	

g(a,b)=median(a,b,1/2)

Fig . 2. Games whose level sets are horizontal or vertical are straightforward

surfaces so that both r and s remain constant locally with changes in the
strategies s . Examples of continuous games of this sort are in Fig . 2 . It can be
verified that both of these games are indeed straightforward .

The next section proves rigorously that games such as those represented
in Fig . 2, are always straightforward . Furthermore, the results of next section
establish that all straightforward games are of this form . Why?

2.2 . Illustrating the results

Why should straightforward rules be LCD? An intuitive argument is as
follows .

Consider a game as above, g : 912

	

JL . Let g be onto and straightforward .
Somewhat surprisingly, in this case, g must be continuous (see Theorem
1 below) . Define now the manipulation set Mr2 : it is the set of outcomes which
the first player can achieve when player two plays r2 . Then if the "true" bliss
point of player 1, r t , is in the interior of M.2 , denoted MY 2 , r l is by definition
achievable by player one with true characteristic rl , by straightforwardness .
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Fig . 3 . 2 players with strategies & outcomes in J? . For r, c interior M,2 , .y is a projection :
otherwise it is constant

N
w

a
4-+
0

M(r2) r2 g(rl,r2) r.l
1

Strategy set of player 1

	

r

13 The boundary of a set X is denoted OX.

Fig. 4. The game is LCD,
and D, is the region in
which 1 is dictatorial

0

This implies g(rl , r 2 ) = rl . Since the condition rl EMM,2 is satisfied in an open
neighborhood of (r l , r2) by continuity, it follows that g(rl , r 2 ) - r l in a neigh-
borhood of (rl, r2 ), when r l E MM,.2 . Thus, g is here a projection locally . Now
assume rl ~M,2 . Then g(rl, r2) must be the closest point to rl within M,2 by
straightforwardness . Clearly, as rl varies within a neighborhood, this outcome
remains constant, see Fig . 3 . If r2E M,2 the same argument applies, so that the
outcome remains locally constant as r2 varies locally as well . Therefore in this
second case g(rl, r2 ) is locally a constant map.

Th e remaining case is when either rr or r2 is in the boundary of M,2 and
this occurs on a set of points (r l , r2 ) E 9912 of measure zero . Therefore, a.e .
a straightforward onto game is locally constant or dictatorial . We have
therefore shown that a straightforward game must be LCD.

The converse is also easy to visualize . Assume g is LCD. Let D 1 be the
subset of 912 where player 1 is dictatorial, i.e ., g(rl , r 2 ) - r l . D 1 can be shown
to be a connected set .

If (r l , r2 ) E D 1 , then rl is clearly the best strategy for player one with true
characteristic rl . Otherwise, if rl ~D1, let T = {(r, s) E R 2 : s = r2} and T - D1
be the part of T not in D 1 . By assumption, g is locally constant on T - D r
with respect to its first coordinate; since g is continuous, g must be constant on
any connected component of T - D 1 , QT - D 1) . Assume that player one's
true preference is rl and (r l , r 2 ) E T - D 1 , see figure 4 . Any point in this
component of T - D 1 therefore gives the same outcome as (ri, r2) so that
there are no incentives to lie within this component of T - D 1 . Furthermore,
by continuity, g(rl , r 2 ) = r l if " (r l , r 2 ) E OC(T - D 1) . In addition, the strategy
r' =A rl is also less preferable to r l if r'ED 1 because g(r, r2 ) = r and is there-
fore further away from rl than is g(rl , r2 ) . Finally, if (r', r2 ) is in another
connected component of T - D 1 where g is locally constant, see figure 4,

Connected components
of T-Dl

D.l- ;

T

\1
DlnT

C(T-D1)
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A

r2

Fig. 5 . Outcomes are 2-dimensional and
there are 3 agents . Agents 2 and
3 announce r2 and r3 : if agent 1 announces
in the shaded area, 1 determines the
median in each coordinate and is
a dictator. For announcements by
1 outside the shaded area, the rule acts as
a projection onto this area

g(r', r2) is still further away from rl than is g(r l , r 2 ) because it is at least as far
as g(r', r2 ) where r' EOC(T - D 1 ) . Therefore a rule which is LCD and onto is
straightforward, as we wished to show .

Up to now the player's characteristics are real numbers . Now we consider
two higher dimensional examples .

Example 1 . Let n = 2 so that choices and bliss points are in qi 2 and let the
number of players k = 2 . Define g(r l , r2 ) = (r11, r22), where r l = (r11, r12) and
r2 = (r21, r22)-

Thus agent 1 is dictatorial in the first component, and agent 2 in the
second . Clearly the rule g is locally constant or dictatorial, and is straight-
forward. Agent 2's manipulation set is a vertical straight line through 1's
announcement, and 1's is a horizontal straight line through 2's, and any
announcement by 2 (or 1) leads to an outcome which is the horizontal (or
vertical) projection of this into the vertical (or horizontal) line through 1's
(or 2's) announcement .

Example 2. Now let n = 2 and k = 3 and g(rl, r2 , r 3 ) = (xl, x2, x3) where
x; = median (rli, r2i, r3i) .

This is a coordinate-wise median rule . Fig . 5 shows the manipulation set of
agent l, when 2 and 3 have announced r2 and r3 respectively . The manipula-
tion set is shaded . If 1's announcement is contained in this, it is the median in
both components and 1 is a dictator .

Consider regions A and B as indicated in Fig . 5 . If r l is in region B, then r l
has the median vertical component and r2 the median horizontal component
and the outcome is (r21 , rl2) . Hence in region B, g(., r_ ;) acts a horizontal
projection onto the manipulation set, where r ; is the vector r with the i-th
component deleted . In region A, r2 has the median in both components and
the outcome is r2 . Hence in A g acts to project to the nearest point of
manipulation set, r 2 . In region C, r2 has the horizontal and r3 the vertical
median, so the outcome is (r2l , r32) and all points in C are mapped to the
nearest corner of the shaded set . It is now routine to verify that g(., r_ i ) acts
elsewhere as shown in Fig . 5, which illustrates its action as a projection onto
a convex set bounded by coordinate hyperplanes .
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3. Main results

In the previous section we gave intuitive arguments about the equivalence of
straightforward rules and rules which are LCD. We now give a formal and
general statement of that result and of other related results .

3.1 . Notation and definitions

Let X be the choice space, X = I" + . A preference pi over X is given by two
objects : a "bliss" point y' in X, and a distance function di : a choice x is
preferred to another z if x is closer than z to the bliss pointy`, i .e ., di (x, y`) <
di(z, y . ) . The distance di (x, y) is given by y;=1mj(xj -yj ), where (mj) is
a strictly positive vector in 91" (i.e ., d is not degenerate) . The indifference
surfaces of pi are then convex ellipsoids with center at the bliss point y` and
axes parallel to the coordinate axes .

The space of strategies or messages S is either (i) S = g" + , in which case
each message in 9i" + is interpreted as a statement of an agent's preferred
outcome, or (ii) S = P, where P is the space of all preferences (distances and
bliss points) defined above. Thus either (gin)'` or Pk is the space S' of strategy
profiles for k players . Since a preference in P is uniquely identified by its bliss
point and its metric 14, P ti 9j2" + . The space of outcomes A is V+ in either
case.

A game form is now a map g : Sk --+A . Continuity of g is defined with
respect to the usual topology of Euclidean spaces . When the game form g can
in principle take any value in 91", g is called onto .

A game is given by a game form as above, and a family {pi} of preferences
over outcomes, designated by matrices Mi e P, i = 1, . . . , k.

The symbol (mi , m_ i ) denotes a message or strategy profile in Sk , with its
i-th . component equal to mi in S and where m_~ is a k - 1 vector of strategies
for players other than k .

A strategy profile (m i , . . . , mk) is a dominant strategy equilibrium if for all
i = 1, . . . , k and m the outcome g(mi, m is preferred to the outcome
g(mi , m_ i), for all mi EP, according to player is preference pi .

1a The inner product <, ) i defining the metric di can be identified by a matrix M, such
that <x, y>i = (Mx, y>, where (, > denotes the standard inner product in ~R" . The
matrix M is symmetric and also positive definite (in order to be non-degenerate) . We
shall assume that preferences are separable, in the sense that if any two choices x and
z differ only on their k-th coordinates, x is preferred to z when the coordinate xk is
preferred to the coordinate zk (i .e ., xk is closer to the k-th coordinate of the bliss point
y than Zk). In this case the matrix M is diagonal, and we can write

di(x, y)

	

x-y~~ t = <m, (x - y)> = L mj(xj - yi),
j=1

where m is a positive vector in V . We assume m is strictly positive, since otherwise the
metric would be degenerate . A preference is thus completely identified by a bliss point
yi in V + , and by a strictly positive vector me J3".
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A game g is straightforward if (r l , . . . rk) is a dominant strategy equilib-
rium for players with characteristics (r l , . . . , rk) in Sk, i .e ., truthful messages
about characterstics are dominant strategies for each player .

The pre-manipulation set of m_ i is the set

Nm_i = l(mi, m-i) E Sk : mi E S j .

A function f :9{s -> 91 is locally constant or dictatorial (LCD) if it is continuous,
and for almost all" x in V, there exists a neighborhood Nx c Ji

s with

or

flNX = constant

f/Nx(y) - yd,

	

for some d E {1, . . . , k}, for all y in N., .

For higher dimensional domains and ranges, a function f : (9lm)k --)~ 9t' is
called separable if the j-th . coordinate of the image depends only on the j-th .
coordinates of the arguments, i.e .,

{' 1

	

1

	

k

	

k

	

i

	

k

	

./' 1

	

k
f(xl, . . .,xm , . . .,xl, . . .,x �,)=f1(xl,

...,x1),
" . .,Jm(xm, . . .,xm) .

A function f : (9jm)k __), 9i"' is called LCD coordinate-wise or LCD, if it is
separable, f = (fl , . . . ,fm), and if each f is LCD for i = 1, . . . ,m.

We consider here game forms which are not necessarily onto: their images
are linear subsets of A = 92", i .e ., g(S') = 9{S c J?" with s < n, or g(S') =I(x l , . . . , xs) EV: ai < xi < bi , each i} . Such games do not necessarily respect
unanimity even if they are straightforward . The next result will show that any
such straightforward game g : Sk -+ A is LCD, where the strategy space S is
either 9?" or the space of preferences P defined above. Furthermore, being
LCD is also sufficient for straightforwardness .

Let X be a subset of a topological space Y. Then X is residual if it is
a countable intersection of open and dense subsets of Y. A residual set in
a complete normed space is always dense .

3.2 . Lemmas

The following are simple but useful properties of straightforward games .

Lemma 1. A straightforward game g : (91")k --+ 9I" respects unanimity ifand only
if it is onto .

Proof. In the Appendix.

Lemma 2. If a game g : 9j 2 -> 91 is straightforward and onto, then the outcome
g(rl , r2) is contained in the segment [rl, r2] .

Proof. In the Appendix .

Lemma 3. Ifk = 2, g is straightforward and its image is a segment [a, b] c 91,
then either the outcome g(rl , r2) is in the segment [rl , r2 ], or else g(rl , r2) is in the

1 s "Almost all" indicates for all points in RS, except possibly on a subset of Lebesgue
measure zero in 93 5 .
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boundary of the segment [a, b] denoted a [a, b] . Furthermore, ifthe strategy rl is
not in [a, b], then the outcome g(rl, r2) is the same as the outcome g(x, r2 ), where
x is the closest point to rl in [a, b] .

Proof. In the Appendix.

Now define the manipulation set M,, _ i , i .e ., the set of outcomes that can be
obtained by player i when all other players have announced a vector of
messages (r l , . . . ,r i - 1 , rc+1, . . . rk) = r-i in Jik-1 . Mr _ j = {y: y = 0(r, r-j),
r E 9R}

Lemma 4. Ifg : 91k __+
91 is straightforward and the strategy ri is in Mr_ . then the

outcome g(rl , . . . , rk) = ri . If rj~Mr_,, then the outcome g(rl , rk) is the closest
point to ri in the boundary ofMr_ ., denoted OM,_, . In particular, g(9n )k is closed .

Proof. In the Appendix.

3.3 . Straightforward games with a convex image are continuous

Theorem 1 . Ifthe choice space is one-dimensional, g : 91' --). % is straightforward
and its image g(W) is convex, then g is continuous . In particular, if g is
straightforward and respects unanimity, then is it continuous .

Proof. In the Appendix.

Remark 1. Not all straightforward games are continuous . Figure 6 gives an
example of a discontinuous straightforward game with a non-convex range .

It is clear that the game in Fig . 6a is straightforward for any pair (r l, r2 ) in
the interior of one of the shaded areas . When the characteristics of the players
(r l , r2 ) are either rl = 2 or r2 = 2, it is easy to see that g is straightforward also,
since the outcomes 4 and 4 are equi-distant from Z. Saying the truth is thus
a dominant strategy for both players . The example in Fig . 6a can be general-
ized to produce straightforward games with a large, even countably infinite,
number of discontinuities . Figure 6b shows a rule which is LCD, discontin-
uous and not straightforward . So without continuity the equivalence of
straightforwardness and being LCD does not hold, although straightforward-
ness and a convex range together imply continuity (Theorem 1) .

3.4 . Straightforward rules and LCD rules

Lemma 5. Let 0 : Pk --)~ A be a locally constant or dictatorial (LCD) rule . Then
0 is straightforward .

Proof. The proof is in the Appendix.

We can now state formally the main result of this paper :

Theorem 2. Let g : Sk -* A be a gameform. Then g is straightforward ifand only
if g is locally constant or dictatorial.
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Fig. 6 . a The game g : [0, 1] 2 -+ [0, 1] is defined by g(ri, r 2 ) = 1/4 if r l < 1/2 and r2 < 1/2 ;
g(r l , r 2 ) = a otherwise . b In this case, 9(x1, x2) = 0 for 0 < x l , x 2 < ?, = 1 for i < xl , x 2 < 1,
=Zfor O<x,52and2<x 2 <l,and =4for2<xl < land0<x2 <z

Proof. The proof is in the Appendix. Sufficiency is clearly established by
Lemma 5 above . The formal proof builds on the intuitive arguments of the
previous section .

An immediate implication of our main result is that smooth straight-
forward rules onto 9" are coordinate-wise dictatorial :

Corollary 1. Ifg : (9i")' --* Wis straightforward anddifferentiable, and its image
is 32", then g is coordinate-wise dictatorial. In particular, g is not anonymous.

Proof. Since by Theorem 1, g is LCD, by differentiability each coordinate
must be either constant everywhere, or a projection . If the map g was constant
in one coordinate, g could not be onto W. Therefore g must be dictatorial
coordinate-wise, implying that each coordinate j is identically equal to the
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j-th . coordinate of some (fixed) player, d; . In this case a permutation of the
agents alters the outcome. This proves the corollary .

Corollary 2. Let 0 : Pk --)~ A be a Rawlsian social choice rule .

	

Then 0 is
straightforward.

Proof. Rawlsian rules are those which maximize the utility of one agent - the
agent who is worst off. This agent is therefore dictatorial . The identity of this
agent may vary, so that the rule s locally dictatorial .

3.5 . Robustness of straightforward games

We shall now study the robustness of straightforward games. Consider the
family of all straightforward game forms g : Pk --+ A, where A is linear subset of
9i" . As we have shown in the proof of Theorem 2, each such g is always
representable as a continuous function g : (~R")' -+ A. This is because straight-
forwardness implies that the outcome that g assigns to messages in P' depends
only on the bliss points of their messages so that Theorem 1 applies and g is
continuous . We shall therefore consider the family of all continuous maps
f : (91")k --+ A, denoted C° ((1i")k , A) . In order to give this space an appropriate
norm topology, we shall consider the space A to be bounded, i.e ., A is a cube
in 9i", denoted I". The message space is also taken to the I" . The space
CO((%")k ' A) is given the sup norm topology, with the distance between two
functions f and g given by sup,, n .k 11 f(x) - g(x) II . The next result establishes
that the property of straightforwardness is not structurally stable, since small
deformations of a straightforward function are not straightforward .

Theorem 3. Thefamily ofnon-straightforward games on a bounded choice space
is a residual set of the space ofcontinuous maps (C ° (I", I"))from I"''` to Ik , and,
in particular, is a dense set .

Proof. The proof is in the Appendix .

4 . Nash implementation

The following result analyzes the problem of Nash implementation in cases
where preferences P, messages M and outcomes A are one dimensional .
Consider a game form g : M' -> A, where both the message space M and the
outcome space A are one dimensional, M = A = I, I the unit interval in J?.
We shall require g to be a Ck+ 1 map," and to satisfy a regularity condition (1)
defined as follows.

Regularity condition: Let T7 = (P1i, . . . ,qk_j) denote a non-empty subset of
k - j integers in {1, . . ., k} . Define the map gn : Mk x I , W-'+ 1 by

g,,(m, b) = (Dg, 1(m) + g(m), . . . , Dg,,k_; (m) + g (M), g(M))

16 For related results on implementation of smooth maps, see Laffont and Maskin
[17] .
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for all (m, b) E M' x I where Dg,," is the matrix of first partial derivatives of
g with respect to il l . Let A, be the "diagonal" subset

A n = 1(xl, . . . , xk _ ; + 1) E 9jk-i+
i : x i = x;V i = 1, . . .,k -j + 11 .

Then g must be transversal to Ark, i.e .

g,, rhA,,, b'q c {1,
...,k}.

	

(1)

Condition (1) applies to any (m, b) EMk x I such that all k -j + 1 coordi-
nates of its image in R'-j+ 1 under g,,(m, b) are equal. This is equivalent to
g(m) = b

	

and

	

Dg,(m) + b = b, . . . , Dg,,,_ .(m) + b = b,

	

or

	

equivalently
g(m) = b and Dg,,, (m) =

	

. . .

	

= Dg,,k_ .(m) = 0 . In this case condition (1) implies
that the gradient Dg,,(m, b) has rank k -j at such points, i.e ., at points
(m, b) E Mk x I mapping into the diagonal of R'-j+ 1 .

A game form g satisfying (1) is called regular. Note that condition (1) does
not imply the gradient Dg(x) =A 0 for all x E Ik . The following lemma estab-
lishes that (1) is satisfied for a generic set of Ck+ 1 games :

Lemma 6. Consider the family G of all Ck+ 1 maps { g : Ik --).I }, endowed with
the Ck+" sup topology . Condition (1) is satisfied on a residual (and in particular
dense) set of G.

Proof. The proof is omitted due to space constraints, but can be obtained
from the authors . It is in a Columbia Business School Working Paper with the
same name as this article .

Note that the genericity of the condition (1) on Ck+ 1 games, does not
imply that the set of rules to be Nash implemented is a generic set . The
following theorem proves that only very special rules will be Nash-implemen
table . The reason for this is that a large class of regular games will implement
the same rule .

Theorem 4. Let 0 be a continuous social choice rule, 0 : Pk --+A where
P = A = 1, the unit interval in 93, and k >- 2" . LetM = I be the message space
consisting ofstatements on bliss points of individual preferences. If the rule 0 is
Nash implementable by a regular game g : Mk -+ A, then 0 is locally constant or
dictatorial (LCD).

Proof. This is proved in the Appendix.

From Theorem 4 we obtain the following result, which is valid for any
euclidean space of outcome or message spaces :

Theorem 5 . (1) Let 0 : Pk ---->A be a rule which is Nash implementable by
a separable regular game"' g. Then 0 is straightforward and LCD. (2) If

1 ' The space of preferences P is here identified with the space of outcomes A = I by
assigning to each preference p e P its (unique) bliss point b in I . Therefore the space P is
given the standard topology of I in which two preferences P1, P2 close it their bliss
points b l , b2 are close in I . Continuity of

	

refers here to this topology on P .
18 A separable game g : ikm -+ I,, g = (g 1 , . . . , gm) is said to be regular if each compo-
nent function gi, i = 1, . . . , m, is regular .



272

	

G. Chichilnisky, G.M. Heal

0 : P' --+ A is straightforward and regular, then 0 is LCD and (of course) Nash
implementable by a separable regular game.

Proof. First note that if a rule 0 is Nash implementable by a separable game g,
then 0 is separable . Therefore by Theorem 4 if 0 is Nash implementable
by a separable regular game g = (g1, . . . , gm), then 0 is separable, i .e .,
0 = (01, . . . , 0�,), and each Oi is implementable by a regular game. Therefore,
each Oi is LCD, which implies, by definition, that 0 is LCD.

The converse is immediate : any straightforward rule 0 is obviously
Nash implementable by the game form it defines . Therefore we can apply
Theorem 2 and this proves that 0 must be locally constant or dictatorial .
This completes the proof.

5 . Conclusions

Being locally constant or dictatorial has been shown to be a necessary and
sufficient condition for straightforwardness . This is an intuitively appealing
result: it is clear that constant rules or dictatorial rules are straightforward .
Our result says that the only straightforward rules are those obtained by
"patching together" in a continuous fashion rules where are locally constant
or locally dictatorial in each coordinate . However, such rules may be quite
complex: many LCD games are simultaneously continuous and anonymous,
and also respect unanimity . Hence they satisfy the axioms introduced by
Chichilnisky [6], and subsequently used by others, for characterizing ethically
acceptable social choice rules . Such axioms are not satisfied in general without
restrictions on preferences, see, e.g ., Chichilnisky [6] and Chichilnisky and
Heal [9] .

Moreover, as the "patching together" of constant and dictatorial rules can
be done continuously but not smoothly, it immediately follows that if one
requires smoothness, the rules must be either constant or dictatorial on each
component. If onto, the rule must be dictatorial coordinate-wise, and thus
cannot be anonymous.

We therefore have a rather simple and intuitive characterization of the
possibilities for straightforward implementation, which shows that only a rather
special type of rule is straightforward, and that the class of such rules is not
robust. We have also shown that being locally constant or dictatorial a neces-
sary and sufficient condition for implementability via the Nash equilibria of
a separable regular game. So with separable rules, even though Nash implemen-
table rules is much less demanding, the relaxation of the implementation
concept (from straightforwardness to Nash) does not change the results .

A. Appendix

A.1 . Proofs of results on straightforwardness

AJJ. Proofs of lemmas

Lemma l. A straightforward game g : (V)k -, 91n respects unanimity ifand only
if it is onto .
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Proof. If g respects unanimity then the image of g covers 91". The converse
is also immediate . Assume g is straightforward and onto ; for any r EV let
r = g(rl, . . . , rk), i.e ., r is attainable by player 1 (by announcing rl) when the
other players announce a k - 1 vector (r 2 , . . . , rk). Since r is the best outcome
for player 1 with true characteristic r, it follows by straightforwardness that by
stating the truth, player 1 must be able to attain r, i.e ., g(rl, . . . , rk) _
r => g (r, r2, . . . , rk) = r.

Iterating this procedure, one obtains g(r, . . . , r) = r, i.e ., g respects un-
animity .

Lemma 2. If a game g : qj 2 _+ 9 is straightforward and onto, then the outcome
g(rl, r2) is contained in the segment [r l , r2] .

Proof. Being onto and straightforward, g respects unanimity by lemma 1, so
that g(r2, r2) = r2 . It follows that for any r l g(rl, r2) must be at least as
preferable to player one with true characteristic r l as is r2 , so g(rl, r2) is closer
to rl than is r2 . Since this is also true for player 2, then g(rl, r2) E [rl, r2 ] .

Lemma 3. Ifk = 2, and the game form g is defined on 91, is straightforward and
its image is a segment [a, b] c 9?, then either the outcome g(rl , r2 ) is in the
segment [r l , r2], or else g(rl, r2) is in the boundary ofthe segment [a, b] denoted
a[a, b] . Furthermore, ifthe strategy rl is not in [a, b], then the outcome g(rl , r2 )
is the same as the outcome g(x, r2), where x is the closest point to r l in [a, b] .

Proof. Consider first the case when [r l , r2] n [a, b] _ ~ . In this case by
straightforwardness the outcome of (r l , r2) must be the closest point to r l and
to r2 in [a, b], i.e ., a point in @[a, b] . Secondly, consider the case of [a, b]
[rl , r2] . Then the lemma is obviously true, by the assumptions on g. Thirdly,
note that if rl E [a, b] and r2 c [a, b], then obviously g(rl, r2) E [rl, r2] . Finally,
suppose that both rl and r2 are in [a, b] . Then assume g(rl , r2 ) = r. By
straightforwardness, g(r, r2) = r and similarly g(r, r) = r. Hence the restriction
of g on [a, b], g/[a, b], is onto and lemma 2 applies .

Now recall the definition of the manipulation set Mr _ i , i.e ., the set of
outcomes that can be obtained by player i when all other players have
announced a vector of messages (rl, . . . , ri _ 1, ri+ 1, . . . , rk) = r_ i in 9k-1 , Mr _ ; _

I y: Y = 0(r, r- j), rE'.R} .

Lemma 4. If the gameform g : (91")k -~ ~i" is straightforward and the strategy ri
is in M,- i then the outcome g(r l , . . . , rk) = ri . If ri EMr_ ., then the outcome
g(rl , . . . , rk) is the closest point to ri in the boundary ofM,_ ., denoted OM,_, . In
particular, g(9")k is closed.

Proof. This is immediate. If ri E Mr- i, then ri is attainable by the i-th . player, given
the other messages r- j . Then by straightforwardness g(rl , . . . , r;, . . . , rk) = ri .
If rj ~Mr, then by straightforwardness g(rl , . . . , r i , . . . , rk) must be the best
attainable by player i with characteristics ri . Thus g(rl , . . . , ri , . . . , rk) must be
the closest point to ri in M,_ ., and thus in OM,_ . .

Theorem 1 . If the choice space is one-dimensional, g : 'A' --+ 91 is straightforward
and its image g(9ik) convex, then g is continuous . In particular, ifg is straightfor-
ward and respects unanimity, then it is continuous .
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Proof. The strategy of the proof is as follows . We consider first the case of
2 players, and then extend the result to any number by induction . In the case
of two players, we deal first with the case in which neither rl nor r2 are in the
image of 912 under g, g(~R 2 ) . In the remaining case we show that the graph of
g is closed, and hence that it is continuous .

Consider first the case of two players, k = 2 . Assume first that neither rl
nor r2 are in g(9 2) and let the sequence (ri, rz) -, (r l , r2) . If [r l , r2] does not
intersect the image of g, then there exists N such that [ri, r2] will not intersect
9012) either b'h > N. Thus, for h > N, g(rh , rz) - x, where x is a point in
ag(91 2), by Lemma 3. Since the outcome g(ri, r2) is the same point x in this
case, this proves continuity.

If rl is not in the image g(91 2) but r2 is, then g(rl , r2 ) = g(x, r2) by lemma 3,
for some x in g(

9 i2), so we consider next the case where both rl and r2 are in the
image of g. We show that in this case the graph of g is closed .

Let r l and r2 be in g(SJ12) and r l -* r2 . By Lemma 4 if rl E M,._ , the
manipulation set of agent 1, then g(rl , r2) = rl and g is continuous . Now
assume that r l ~Mr, Since limh rh = r i , i = 1, 2, 3N such that for h > N,
r i -* r?, and

g(ri, ri) = a EUMr_ ~ .

Since r h --+ r2 , by lemma 4, g(rh , r2) = a for h > N, as a will also be the nearest
point in Mr_ 1 to r 1 . This implies that

lim g(ri, r2) = a .
h

We now claim that both points a and g(rl , r2 ) must be at the same distance
from rl . To see this note that if a is nearer then player one could obtain
a better outcome by stating r 1, whereas if g(r l , r 2 ) is nearer then player 1 with
true preference r i has an incentive to misrepresent and state r l as her true
preference. So either g(rl , r 2 ) = a or the two points g(rl , r 2 ) and a are equidis-
tant from rl on opposite sides . However, g(rl , r2) E [r l , r2] and g(ri, r2) E
[ri, r2] by Lemma 3, implying that g(rl , r2 ) and a cannot be on opposite sides
of r l so that

g(rl, r2) = lim g(ri, r2) = a.
h

Since lim h (r I r2) = lim h g(ri, r2) = g(rl , r2), we have shown that the limits of
points in the graph of g, i.e ., points of the form lim h (ri, r2, g(r h , r')), are
always in the graph of g, since they are equal to (r l , r2 , g(rl , r2)) . Thus, the map
g has a closed graph, which is equivalent to being continuous . This completes
the case in which both rl and r2 are in the image of g and rl -7~ r2 .

Now we consider the case where rl = r2 . First assume that r l = r2 , and
they are both in the interior of the image g(??) . Then since g(r h , r2) E [ri, r2]
for h > N, by lemma 3, we can pick sequences ri and r2 such that without loss
of generality rh < r l = r2 < r2 so that limh g(r h , r2) = rl = g(rl, r2) and con-
tinuity is again ensured .

If r l = r2 and they are both in the boundary of g(9i 2 ) then for h > N we can
assume without loss of generality one of three cases :

either r i E ag(~ 2 ) and r2 G g(912) in which case g(ri, r h ) = r i by lemma 3;
or both r h and r2 are not in g(9 2 ), in which case by lemma 3

9(h
h

r1 r2) = ri
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or, finally, both ri and rz are in g(912 ), in which case

9(r1 ri)E[r1 r2
In any of these three cases, lim h g(ri, r2) is g(r l , r2 ) so that as before, the graph
of g is closed, and thus g is continuous . This completes the proof of continuity
for two players .

The argument for two players is clearly valid when there are k > 2 players,
provided one is restricted to sequences in W in which only two (the i-th . and
j-th .) players vary their messages, i.e ., sequences of the form

lim(rl , . . . , r ;, r; + 1, . . . , r", ri+ 1

	

. . . , rk) _ (rl, . . . , rk) E

	

'` .

We shall now prove continuity of g by induction, assuming continuity when
up to k - 1 players are allowed to vary their messages .

Inductive hypothesis: g is continuous in any k - 1 of its arguments.
Let (ri, . . . , rk) -+ (r l , . . . , rk ), and denote by r" the value g(ri, . . . , rk) = r" .

Iffor all i, r" is in player is manipulation set, i.e ., r h EMY_ ., then all rh's must be
identical, since in this case

g(ri, . . . , rk) = rh

	

for all i,

by Lemma 4. Continuity is assured in this case, since rh -~ r i for all i, and
g(rl, . . . , rk ) = ri b'i . Otherwise, if some message rh is not in M;- ., then by
Lemma 4, for h > N

rh = g(r 1

	

. . . , rh_ 1, ri, rih+ 1

	

. . . , rk) = g(r 1, - . . , rk)~
because by choosing N sufficiently large we can ensure that r i and rh will be as
close as desired . The problem is therefore reduced to one in which only k - 1
messages are allowed to vary, and by the induction hypothesis this completes
the proof.

Lemma 5. Let 0 : Pk -+ A be a locally constant or dictatorial rule . Then 0 is
straightforward .

Proof. Consider first the case where P = A = 91 .

The strategy of the proof is as follows : We consider three exhaustive and
exclusive cases . The first case is when agent j's true preference P; is such that
individual j is a dictator when telling the truth, i .e . g(p;, p_ ;) = b;, the bliss
point of p; . The second case is when there is no preference that j can announce
such that he or she is a dictator, i .e . dpi, g (pi, p- ;) =A b; . Finally, the third case
is when P; is such thatj is not a dictator when telling the truth, but can become
a dictator by misrepresentation, i.e . there exists a pi ~h pi such that
g(p;, p_ ;) = b; where b; is the bliss point of p; . In each of these three cases, we
show that truthful revelation is a dominant strategy .

Assume that individuals' true preferences are given by the profile
(pl, . . . , Pk) . We wish to prove that pi is a dominant strategy for the j-th .
individual .

Define D; c P k to be the region where j is dictatorial . For any k - 1 tuple
of strategies of agents other than j, denoted p_ ;, there are three mutually
exclusive and exhaustive cases :

(a) (p;, p_ ;) E D;, i.e ., 0(p;, p_;) = b;, where b; is the bliss point of p; .
Agent j is a dictator when telling the truth .
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(b) g(p;, p- ;) :~ 4- b; for any p; E P, i.e . (pi, p- ;)~D; for any p; E P. Agent j is
never dictatorial .

(c) g (pi, p-;) :A b;, but there exists some pi E P such that g (p;, p;) :A b,
(i.e . (Pi, p-;)~D; but I p; E P s.t. (pi, p- j) E D;) . Agent j is not dictatorial when
telling the truth, but can become "dictatorial by misrepresentation."

In case (a) it is obvious that pi (i.e . the truth) is a dominant strategy for j .
These cases are illustrated in Fig . 7 . In case (b) let

In the set F(p- j) only pi varies : by assumption, g is not dictatorial with
dictatorj in this set . Hence g fails to be constant with respect to p; only on a set
of measure zero in W(p- ;) . By continuity and because we are in case (b) the set
fp_ ;) has only one connected component. This implies g(., p-;) must be
a constant on all offp- ;), which implies that the true message Pi is as good
a strategy as any in P for the j-th. individual.

In case (c), consider the set D(p-j) of strategies in P for thej-th . individual

Case a

`P(p-j) = {P; EP: (Pi , P- i) E P
k
l

D(P-j) = ~q; EP: (q;, P-j) E D;}.

D(p-;) is thus the set of strategies that make j dictatorial within fp- ;) .
Consider now the strategy p; in 5(p- j) which is nearest in terms of the
distance d( . . .) in 91 to the true preference pi (see Fig . 7), and let

do = d(pj, pj) =

	

min

	

(d(q;, pj)),
9i E 15(p-j)

Note that do =A 0 by the construction of case (c) . Outside of D(p- j), g( ., p-;) is
constant on any connected subset of `P(p-j), by continuity . Hence it is

Case b

Pi pi

S

Fig. 7 . An illustration of the proof that LCD rules are straightforward

Case c
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constant on the following connected set S, a set of outcomes not attainable by
player j given the strategies p_ j :

S = {q E P: d(q, pi) :!E~ do } (-- P,

so that by (2) for all q in S, g(q, p_j) = g(pj , p- j) by continuity . In particular,
g(pj , p- j) = g(pj, p_J Now, if qi ED(p_ j) is such that d(p;, q;) > do , obvi-
ously on the set W(p _ j), qi is a strategy with a less desirable outcome for
individual j than p;, and therefore, also a less desirable outcome than the
truth p; .

Assume without loss of generality that p; < pi and consider the set

Fl = {qeP: q < min{p: pGB(P_Ml
Then g(., p_j ) is a constant map for all strategies in Fl. Since d(F1 , pi) >_
d(D(p_ j ), pi) >_ do , and for qi E Fl , g(q;, p;) is equal by continuity to g(qi, p-;)
for some q; in 5(p_ ;), it follows that strategies in Fl have a less desirable
outcome than the truth p; . Now consider FZ = {q EP: q >_ max {q E S }} . This
is a connected set on which g is constant . By continuity the outcome is equal
to g(pj , p-;) = g(pj, p_i). This completes the proof of straightforwardness
when P=C=I.

Consider now P = A = 9i" . Then, by definition since g is locally constant
or dictatorial it is separable, i .e .

.

	

. b"9(1 1, " . .

	

pk) = 91(b 111 ,

	

b 1' ' k), ' '
9,,(b",,

' ' k),

where b 4 denotes the j-th . component of individual is bliss point . Since the
arguments given above apply to each gi : (91k) __+ 9i, i = 1, . . . , n, it follows that
each gi is straightforward, so that g is straightforward . This completes the
proof of the proposition .

A.1 .2 . Proof of theorem 2
We now prove the main result of the paper, the equivalence of straight-
forwardness to being locally constant or dictatorial . The sufficiency of being
LCD was of course established in Lemma 5, so that what remains is the
necessity of being LCD.

Theorem 2. A map g is straightforward if and only if it is locally constant or
dictatorial (LCD).

The strategy of the proof is as follows .
l . First we prove that being LCD is necessary for straightforwardness

when the choice space is one dimensional, so that a game is a map from
W to 9 . In this case all metrics on the choice space agree and so
preferences are characterized fully by their bliss points.

2 . We then extend the result to higher dimensional cases . First we do this
just for the case in which agent's strategies consist solely of announcing
bliss points, and show that in this case any straightforward rule must be
separable in the sense that the i-th . coordinate of the outcome depends
only on the i-th . coordinates of the agents' strategies . In this case each
coordinate function is a map from 91' to SN and the results of the first
case can be applied.

3 . Next we analyze the case in which agents' strategies involve announcing
the metrics of preferences as well as their bliss points. We show that in
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this case the outcome of any straightforward rule must be unaffected by
the metric announced, and so this case reduces to the previous one.

Step 1 . Case n = 1, strategies are bliss points only .
Note that in the one dimensional case P = 93, because preferences are

statements of bliss points only, since all (non trivial) distances in 93 are
equivalent to the Euclidean distance . Assume that g : S' --). A is straight-
forward . By Theorem 1, g is continuous .

Let (mi, m_ i) be a profile in Pk . Consider first the case where m is in the
interior of the manipulation set Mm_;. Then it follows by straightforwardness
that

9(mi, m-i) = mi .

	

(3)

Since g is continuous, if m 1 i is a small variation of m- i , mi is also in 'm ~ .,
so that

9(mi, m1 i) = me

	

(4 )

for all m l i in a neighborhood U,,,-, of m_ i in Sk -1 .
Similarly, continuity of g implies that ifm! is a small variation of mi, m' is

in Mm' ,, so that (3) and (4) are also satisfied in a neighborhood of mi. o

We have therefore proven that for any profile (mi, m- ;) C Sk , if mi CMm-;,
then g is dictatorial with dictator i in a neighborhood W (mi, m_ i) of (mi, m_i)
in Sk .

Consider now the case of a profile (mi,m_i)CSk where mi~Mm_, for all
i=1, . . .,k.

In that case for any i

9(mi, MA = M :A mi .

Furthermore, by straightforwardness m is the best that the i-th . player can
obtain, so that m C M,,_ minimizes the distance between mi and Mm_. in
A = 93 . It follows that for mi a small variation of mi ,

g(ml, m_ i ) = m,

	

(6 )

since m will also minimize the distance in A between m

	

and M�,_,, see Fig . 8 .
Therefore, g is a constant on a neighborhood V of mi , within the pre-

manipulation set Nm_,, see Fig. 9 .
Since the same argument is valid for all i = 1, . . . , k, it follows that g is

locally constant in a whole neighborhood V (Mi, m_ i ) c Sk .
We have therefore proven that for any profile (Mi, m_ i ) C Sk, the map g is

LCD whenever either mi CMm _, for some i, or else mi~Mm- , for all i . Note that
since g is dictatorial with dictator i when mi C Mm _ ., then for any profile
(m;, m_ ;) C Pk, at most one message say m; can be in the interior of the
manipulation set determined by the others, M._~ . For any given profile
(Mi, m_ i ) C Sk, there are therefore three exclusive and exhaustive cases :

(a) m; CMm-j for some m;, a component of (mi , m- i ) or
(b) m;~Mm_j for all components m; of (m i , m_ i ) or
(c) m; COMm_j for some component m; of (mi , m_ i ) .
As seen above, in case (a) the j-th . player is a dictator in a neighborhood of
(ism_ i ), because the property m; CM._ .i is open in Sk . Therefore g is LCD at
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19 This is established in Lemma 4.

Mm-i

Fig. 8. Proof that .y is straightforward p it is LCD, when S is one dimensional . By straightfor-
wardness the outcome m is locally independent of m;

. . . ... . . . . ._ . . . . . . ....Y . . . . . ._ .- ... . . . . . . . . . . . . . . .

m; = g(mj, m_j) = g(mk, m-k) = Mk

r Nm-i

V

Fig. 9. On each premanipulation set .y is locally constant in a neighborhood of mi if
g(m;, m ,) =A m

such profiles . In case (b), g is locally constant in a neighborhood of (m;, m_ j),

as seen above. Therefore g is also LCD at such profiles .
In case (c) if there are at least two players, with messages m;, Mk respec-

tively and m; E OM j , Mk E OM,,,-,, then m; must equal Mk, since

by straightforwardness. Now, the space of profiles in Sk having at least two
coordinates equal is a set of measure zero in Sk. Therefore case (c) is contained
in a set of measure zero in Sk if m; EOM�,_ ; and Mk EOM, andj ~A k.

Now consider the last case in (c), where m; EOM�,_ ,. for only one m;
in (m i , m- ;) . The manipulation sets M�,_". are closed intervals." Therefore,
the map assigning to each k - 1 profile m_ J. in Sk-1 the strategy m; in the
boundary OM�, -.. (a set consisting of two points in 91 ) is the union of two
continuous real valued maps on Sk-1 . Since the graph of each of these maps is
a set of measure zero in Sk, it follows that the set of profiles (Mk, m- J such that
m; E OM�,_ j for one j E 11, . . . , k} has measure zero in Sk. Since this is true for

each j, it follows that the set of profiles in case (c) have measure zero . This
completes the proof that straightforward rules are LCD in the one-dimen-
sional case. The converse has already been proven in Lemma 5: all LCD rules
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are straightforward . For the one-dimensional case the proof of the theorem is
thus completed . We shall now reduce all more general cases to this case .

Step 2. n > 1, strategies are bliss points only .
We prove the theorem first for the special case where the strategy space is

just qq", i.e ., S = gin and the game form is g : (9i")'` --), A, where A is a linear
subset of J3" . This is the case in which agents' strategies are just the bliss points
of preferences, and do not involve the statement of metrics .

The strategy of this proof is as follows : we show that if g is straightforward
then g is a separable map, i.e ., each coordinate gc of the outcome

g(ri,

	

. . . , rk) = (g, (ri, . . . , rk ), . . . , gn(ri, . . . , rk))

depends only on the i-th . coordinates of the arguments rk , i .e ., on the vector
ri, . . . , rk . So the i-th coordinate of the outcome depends only on the i-th
coordinates of the bliss points announced . Once separability is established, the
result that g straightforward implies that g is LCD follows immediately . This
is because g is straightforward if and only if gi : W -* % is straightforward for
all i, and for each gc : (91)k --+ 93 the preceding proof (for the case n = 1) applies,
so that g is straightforward if and only if it is LCD coordinate-wise .

Consider now (rl , . . . , rk ) E (S)k . For any i, the manipulation set Mr_ . is
a convex set in A. 2°

Let ri E 9n be is bliss point, and let Br . be a ball centered on r i , containing
the point r = g(rl , . . . , rk ) E A. Let Mr - i be agent is manipulation set: by
straightforwardness r is the nearest point in Mr _ i to r i for any metric on 93n,

corresponding to any preference with bliss point r i (see Fig . 10) . So for any
ellipsoid Erj centered on r i and passing through r (Bri is a particular case) there
exists a hyperplane separating Mr - i from the interior of the ellipsoid . Hence
the set of supports to Mr - i at r contains all possible tangents to ellipsoids
centered on ri and passing through r . This implies that Mr _ i is contained in
a cone based at r and generated by affine coordinate lines, as shown in
Fig . 10a. Now it is easy to verify that Mr - i must equal the cone so generated
rather than being strictly contained in it . This follows from straightforward-
ness and the fact that the outcome is by assumption independent of the
metrics of agents' preferences . This is illustrated in figure 10b, where the
nearest point in the manipulation set Mr - i to the bliss point r' depends on
the metric around r' . This would not be true if Mr _ were generated by affine
coordinate lines, as in the first panel.

It is clear that in this case, as shown in Fig . 10a, the k-th . coordinate of the
outcome r = g(rl , . . . , rk ) depends only on the k-th . coordinates of the vectors
r i . Since this is true for all k, the separability of g is established . This completes
the proof for the case g : (91n)k --+A, because each gc must be LCD. In

a° This can be easily seen from the arguments in Laffond [16], derived from those
of Valentine [22], because Mr , is, in this case, the manipulation set that would obtain
if the i-th player's preference was required to have a Euclidean distance function (and
any bliss point), which is the case studied by Laf1'ond, see, e.g ., his Theorem 1 and
Lemmas 5 and 8 . Note that the condition of anonymity of g is not required in these
proofs, and that the proof applies for r_ i in (R")` as in our case .
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a

Fig. 10a, b. Proof that ,g is straightforward <*- it is LCD. Case when n > 1 . The manipulation set
is the cone generated by the coordinate lines through r

particular, it shows that if g : (9 ")k --->A is straightforward, then g is also
continuous, since each component gi is .

Step 3 . Strategies include metrics .
Finally, we consider the case where choices are in ~R", but strategies are

preferences in P, so that g is a map defined on bliss points and metrics,
g : (P")k --+ A, A a linear subset of gin.

We break this step into two sub steps. In the first of these, we show that
when restricted to preferences with bliss points in A, g only depends on these
bliss points and not on the metrics announced by the players . This implies that
g/A' is actually a map from A' c (91n)k into ~R" ; therefore, we can apply the
results of the previous case to show that g is separable, and thus the proof is
completed for strategy profiles in A' .

In the second sub step, we then show the proof is also valid for profiles in
(9i")' outside A', and the proof is completed.
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Consider first the case in which the domain of the map g is preferences
with bliss points in A. First we consider 2 players, and then we generalize this
to any finite number of players . We proceed by induction on the number of
coordinates in which the bliss points of their announced preferences differ .

The first case is when they differ only in one coordinate, i.e ., pi and p2 are
two preferences with bliss points r l and r2 and r l = r2 + Ael , A > 0, e l an
element of the standard basis {ej } of ~R", which we call the first coordinate
without loss of generality . Since g/A' is onto, by lemma 1, g respects unanim-
ity . Therefore player 1 could announce p2 and get the outcome ON, p2) = r2
and similarly player 2 could force the outcome r l . So the outcome g(p2, p2)
must be preferred by 1 to r2 and preferred by 2 to r l . Hence it must be
contained simultaneously in the ellipsoid EP, which is a contour of 1's
preference and goes through r2 and in the ellipsoid EP2 which is a contour of
2's preferences and goes through r l . This implies, in particular, by an exten-
sion of the arguments in the proof of Lemma 2, that the first coordinate of
9(P 1, p2), denoted g l (p l , p2), is in the segment [ri, r2], where ri, and r2 are
the first coordinates of rl and r2 respectively, see Fig . 11 below.

Thus, Opt, p2) must be contained in the singly shaded area in Fig . 11 .
Note that the outcome g(p l , p2) must be contained in the line segment [rl , r 2 ],
otherwise one can find a contradiction . To see this, consider a preference p3
with a bliss point r3 whose first coordinate is the same as that of 9(P1, P2) but
which lies in the line segment r l - r2 . Now, g(p3, p2) must be outside of EP, by
straightforwardness, for otherwise an agent with true preference p l could
announce p3 and obtain an outcome preferable to g(p l , p2). By the arguments
of the previous paragraph, we must also have g(p3, p2) E EP3 which is the
ellipsoid centered on r3 and through r2 , for otherwise a first agent with true
preference p3 could do better by announcing a preference p2 and obtaining p2
by respect of unanimity . This is true for any metrics and so for any ellipsoids
EP, and EP3 respectively centered on rl and r3 and through r2 . This immedia-
tely establishes a contradiction, as is clear from Fig . 11 . This contradiction
cannot be established if g(p l , p2) E [r l , r2] .

Now, if g(p l , p2) were to vary within [rl , r2] as the two players vary their
metrics (keeping their bliss points r l and r2 fixed) then obviously, the outcome
could be manipulated by an appropriate choice of metric . Thus, when the bliss
points of pi and p2 differ in one coordinate only, g must be independent of the
metric announced .

Furthermore, note that when r l and r2 differ in one coordinate only, if
g(pl, p2) C [rl, r2], the interior of the segment [rl , r2], then g(p l , p2) is a con-
stant map for all p 1 and p2 with bliss points r i and r a in the segment [r l , r2] :
this follows from the characterization of straightforward games as LCD maps
for the case n = 1, and the fact that as the outcome is neither rl nor r2 so that
neither player is dictatorial .

We now make the following inductive hypothesis :

Inductive assumption. (1) If p l and p2 are two preferences whose bliss points r l
and r2 differ at most in m-1 coordinates, then the outcome g(p l , p2) depends
only on the bliss points r l and r2 and, furthermore, (2) if for some coordinate j,
9' (PI, p2) is in the interior of [ri, r2], then g is constant for all (p l , p2) whose
bliss points are in the box B[rl , . . . , r2] determined by r l and r2 , i .e .,

{bc91":b'i,ru<b' < rb,i=1, . . .,nwhere la,b}= {1,21 or{2,1}} .
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9'(pi,p2) > ri > r2,

9(pi, p2) = 9(pi, pa);

Fig . 11 Proof that ,g is straightforward -,~* it is LCD. 9(P1, Pz) must lie in the shaded area

Now assume that the bliss points of pi and P2, rl and r2 , differ in m coordi-
nates . Two exclusive and exhaustive cases may arise : (a) g(p l , P2) is contained
in the box determined by r l and r2 , (2) this condition is not satisfied, so that we
can assume without loss of generality that, for some coordinate j

see Fig . 12 below
In case (2), note that for all preferences p a with bliss points s2 in the half

line (r2 , g(pi, PA and same metric m2 as P2, we have

this follows from the fact that as g(p l , P2) is the nearest point to r2 in the
manipulation set of agent 2 according her metric, it is also the nearest point to
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Fig. 12. p2 has a bliss point with the same,j-th . coordinate as r,

s2 according to this metric (see Fig . 12) . Now, choose- pa so -that it has a bliss
point s2 in (r2 , g(pl, p2)] having the same j-th . coordinate as r l , see Fig . 12 .
This is always possible because the half line (r 2 , g(p l , p2)] intersects the
hyperplane H' = {(xl, . . . , x") : x' = ri} in R" .

Now, we assumed that the bliss points of p l and p2 differ in m coordinates
only, so the inductive hypothesis applies to p t and pa because pa and p l differ
in m-1 coordinates only . Therefore,

1 . g(pl, p2) = g(pl, pa) by construction .
2 . g(pi, pa) = g(pi, pa) where p" has the same bliss point as p2 i.e ., s2, and

any metric (using the inductive hypothesis) .
3 . 9(pt, pa) = g(pl, q2) where q2 is a preference which has a bliss point

anywhere in the half line (r2 , g(p l , p2)] and the same metric as p2,
which may be any metric. This follows because g(p l , p2) is the nearest
point to s2 in the manipulation set of agent 2 according to her metric
and so is the nearest point in the manipulation set to any point on the
line (r2 , g(p l , p2)] according to this metric .

It therefore follows that

g(pl, p2) = g(pi, q2)

for any preference q2 with bliss point r2 , and arbitrary metric, which is what
we wanted to prove - thus g is independent of the metric in this case also .

The only case left is (1) . We can thus assume without loss of generality that
for all j

ri

	

9'(P 1, p2) < r2,

Note that if for all p l , p2, one part of this inequality is an equality for all j, the
result is automatically true because Opt, p2) is then in the boundary of the
box determined by r t and r2 so that its h-th coordinate depends only on
the h-th coordinates of r l and r 2 , i .e . it is separable . We can therefore assume
a strict inequality for some j; without loss of generality, assume

ri < g'(pi, p2) < r2 .

The rest of the proof is simple : we show that we can alter p i and p2 into p l and
p2 so that fl, p2 have bliss points which differ in m - 1 coordinates only and
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r i
Fig. 13 . y is constant for all p, and P2 whose bliss points are in a box determined by r, and rZ

the condition

F1 < g'(P1, P2) < F2

is still satisfied .
By (1) of the inductive hypothesis this implies g(pl, p 2 ) is independent of

the metrics for all P 1 , P2 whose bliss points are in the n - (m - 1) dimensional
box determined by F 1 and F2 . By (2) of the inductive hypothesis g is a constant
for all preferences whose bliss points are in the n - (m - 1) dimensional box
determined by F 1 and F2 . This will be shown to imply immediately that
g(P1, P2) is a constant in the box determined by r l and r2 ; in particular the
map g is independent of the metric in this case . Fig . 13 below illustrates the
argument:

Consider pl and p2 such that their bliss points F1, F2 have one more
coordinate in common than do the bliss points rl , r2 of pl and P 2 . Let this
common coordinate be the h-th coordinate, and let this coordinate be the h-th
coordinate of g(P1, PZ). Condition (1) of the inductive hypothesis is satisfied,
so that g is independent of the metric if bliss points are in B[Fl , F2 ] .

Since g is straightforward, the h-th coordinate of the outcome g(p l , p2 ) is
in the interior of the segment (Fi, FZ) by the following arguments (which are an
extension of those illustrated in Fig . 11 and used in the case of preferences
whose bliss points differ in one dimension only at the start of step 3 of this
proof, see Fig. 13 for an illustration) . Suppose that g(pl, p2)~B[Y1, r2] . Then
consider the point in B[rl,r2] nearest to g(1,p2 ): call this pointr3 . Now we
can generalize the one-dimensional argument at the start of step 3 of the proof
which is illustrated in Fig . 13 . Hence g(pl, p2) E interior B [r1, r2], and of
course the outcome is independent of the metrics announced .

Now we can use (2) of the inductive assumption to assert that g is also
constant within the n - (m - 1)-dimensional box determined by Fl and F2 . In
figure 13 this implies g(P1, P2) is constant for P 1 , P2 whose bliss points are in
B[7,r2], as in this case g(p1, P 2 ) E B[T , r2 ] . A similar argument can be given
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to prove that g(p l , P2) is constant along any coordinate segment j in which the
inequality

ri < 9'(P1, P2) < ra

is satisfied and then that 9(P1, P2) is constant in the box determined by the
coordinates of r l and r2 .

In summary : we have proven that if preferences have bliss points rl, r2
which differ in one coordinate only, then the outcome is in the interval defined
by these bliss points and is independent of metrics : it is a constant for all bliss
points in the interval [r l , r 2] . We have then assumed as an inductive hypothe-
sis that if preferences have bliss points r l , r 2 which differ in at most m - 1
coordinates, the outcome depends only on the bliss points and is constant
whenever bliss points are in B[rl , r 2 ], provided that for some coordinate
9(P1, P2) is in the interior of B[rl , r2] . Given this assumption, we have proven
that if bliss points differ in only m coordinates, the same properties hold . The
completes the proof for 2 players . A straightforward induction procedure on
the number of players shows that the result is also true for k > 2 players .

We therefore know that if g is straightforward, g is independent of the
metric announced and depends only on bliss points . By the proof in step 2 of
the first part of the case n > 1, this implies that g is separable on Ak , thus
implying that g is locally constant or dictatorial on A'.

Consider finally a set of strategies (p1 , . . . , Pk) E (Rn)k - Ak . Assume first
that a subset of preferences, say p1, . . . ,p;, j < k does not belong to A. Then

9(P1, . . ., Pk) = 9(TI(P1), . . ., Tn(pi),- ., Pk),

where n(p) is the preference with same metric as pi and bliss point in the
intersection of aA and the half line (r i , 9(P1, . . ., Pk)] . Since, by construction
(n(pl), . . ., 7r(p;), . . .,) E Ak then it follows by the first part of this proof that
9(~(P1), - . ., 'r(P), - . ., Pk) does not depend on the metric of the preferences
TU(P 1), . . . . (Pi), . . . , Pk . Hence neither does 9(P1, . . . , Pk) depend on these metrics .
Therefore the map g is independent of the metrics in this case also . So we have
shown that if g is straightforward then g is separable, by step 2 of this proof.

Now, since for all (p1, . . . , Pk) E (Rn)k

9(P1, . . . , Pk) = 9(7(P1), . . . , 7U(Pi), . . . , Pk),

where Tc(pi ) E OA by construction, then, for all i, the manipulation set Mp _ j
corresponding to any profile (P1, . . ., Pk) in (R")k is an affine subspace : this is
because the first part of this proof for profiles in Ak now applies . The rests of
the argument then follows : since for each i, g(p 1, . . . , p _ j ) minimizes the
distance between ri and Mp _ j (where ri is the bliss point of pi), it follows that
the map 9(P1, . . ., Pk) = g(r l , . . ., r k ) is separable in this one as well . The first
part of the proof of the theorem (for n = 1) is now applied and it proves that
g straightforward implies g is LCD. The converse follows from Lemma 5. This
completes the proof of the characterization theorem.

A.2 . Proofs of non-robustness

A topological space X is second countable if it has a countable base of
neighborhoods for its topology .
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A continous mapf: X --+ Y, X and Y topological spaces is called open if the
image of any open set U in X, f(U), is open in Y. Note that open maps have
the property that if D is a dense subset of Y, then f -1 (D) is dense in X.

A set is residual if it is the intersection of (at most) countably many open
dense sets . The Baire Category theorem asserts that a residual subset of a
complete metric space is dense .

Let H = If: I k -+ 9i, f a bounded C"' map}.
H is a linear space, with the

addition rule (f + g)(x) = f(x) + g(x) . The Ck+1 sup norm I1 .llk+1 on H is
defined by

k+1
elf - 911k+1 = sup I JjDjf(x) - Dig(x)II

xe7" j=0

where D° (f) denotesf
Endowed with the Ck+ 1 norm, H is a Banach space, and in particular, a

complete metric space.

Theorem 3. The set of non-straightforward games on a bounded choice space is
a residual set of the space ofall continuous mapsfrom I"° k to I", CO (In,

k, I"), and
in particular is a dense set .

Proof. The strategy of the proof is as follows . Let L be the set of continuous
maps which are locally constant or dictatorial . We shall consider first the two
simplest cases : when a rule g in L is dictatorial, and when it is constant . We
prove that for any dictatorial rule g and dictator d, and any small E > 0,
there exists a map g, in the complement of L, C(L) C C O (I" ,k, I"), with
11 9r: - 911 sup < e . The proof will then be extended to include rules which are
only locally dictatorial, or locally constant, thus implying that C(L) is dense in
C° ( In ,k, I") . Finally, we shall prove that C(L) is open.

Let C(V) = {p E Ik : p = (p1, . . . ,Pk), pi =A pj for i :Aj} .
Let g : I",k __+ I" be a dictatorial map, with dictator d. For any e > 0,

e < 1/2, let f be a C 1 diffeomorphism f : I" _+ I", such that

sup 11(f(b) - b) 11 < e, Df(b) 0 0 for all b E I"
beI

and

f (bd) =A b d

	

for some b d E I" .

Consider now the composition map

9t = f ° g : I"' k __+ I" .

7

Then, by construction 11 g,; - 9 II sup < e . Now, since for all p E I n, k, Df(p) 0 0
and Dg(p) =A 0, it follows that Dgr(p) :A 0 for all p . Therefore gF is nowhere
locally constant .

Consider now p E g- 1(bd) c I"°1, p E C(0). Then gF = f g(p) =f(bd)

	

b d
by construction . Therefore gt is not dictatorial because if it were dictatorial
then g(p 1 , . . .

	

Pk) = Pd for some d, whatever Pd, and 9, =A Pd for some bd E I .
Finally, gF is not locally dictatorial (with dictator other than d) at p,

because by construction

agr

aPj
(P) = D.f(P) -

apj
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and ag/api = 0 if j =A d . Note that for all j, ag/api exists because g is dictatorial
and, in particular, differentiable . Therefore gt is in C(L) . Since E is arbitrarily
chosen, any dictatorial rule g is a limit of rules in C(L) .

Now, consider any constant rule g : I", k __+ I", 9(P1, . . . , Pk) = bo E I", bo
a constant . By the Stone Weierstrass theorem, for any E > 0 there exists a C 1
map gF such that

11 gr: - g Ikup < E

because I",k is compact . We can obviously require, furthermore, that
Dgt(p) =A 0 for p E C(V). Therefore gF is not locally constant at p .

Note that such gF cannot be locally dictatorial at p either because it is in an
e-neighborhood of the constant map g, and £ is arbitrarily chosen : any locally
dictatorial map on a set U c C(V) will be at least at a positive distance EO
from the constant rule g, eo a constant depending on the set U and on bo .

Since £ is arbitrarily chosen, any constant rule g is a limit of rules in C(L) .
Consider now an arbitrary straightforward g in L, and let p E C(V). Then

there exists a neighborhood U of p such that either g/u is dictatorial, or g/v is a
constant map.

The argument given above for constant and dictatorial maps, when
restricted to U (__

Pk, prove that g/v can be arbitrarily approximated by a rule
gt(U) defined on U, and such that 9F(U) is neither locally constant nor locally
dictatorial on U. A standard argument using partitions of unity (see, e.g .
Guillemin and Pollak [14, p . 52]) can then be used to prove the existence of
a continuous map g, : I",k --). In such that gtla = g,(U) and 11 g,: - g 11 sup < E .

Since g,(U) is not locally constant nor locally dictatorial at p, gr; is not
either . Thus gr is a function in C(L) within an E-neighborhood of g . Therefore
C(L) is dense in C ' (I",k , In) .

Next we prove that it is open. Consider now g E C(L) . Let p E C(V) be such
that g is neither locally constant, nor locally dictatorial at p .

The fact that g is not locally dictatorial at profile p implies that in any
neighborhood UI, of p, there exists for each j = 1, . . . , k a profile p.i and
a number E' > 0 such that

g(p') - gi(p')I = E',

where b;(p') is the bliss point of the j-th . preference in the profile p' . Now for
any p E C°(In'k, In),

p(p') - bi(p')I ? E' - (1 p - g
From this inequality it follows that no rule within an E'/2 neighborhood of g in
CI (I",k ' In) can be locally dictatorial with dictator j at p . This is because any
such rule will satisfy

I p(p') - bj(p')l > E'/2
at any profile pi where g satisfies

IO(p') - b,(p')I = e',

and every neighborhood of p will contain such points . If we now set
E = min .;-1, ._kg', then no rule p within an E/2 neighborhood of g in
CO(In,k' In) i s locally dictatorial at p .
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As above, let p E C(V), g E C(L) not locally constant at p, and let q E Up be
such that

g(p) - g(q)I > E1

for some 0 > 0; such a q exists because g is not locally constant . Then

Ip(p) - p(q)I >s1- 21Ip - gllsup .
Therefore for 6 = 1 min(s, s'), any rule p within a b neighborhood of g in the
sup topology is neither locally constant nor locally dictatorial at p . Therefore
C(L) is open, completing the proof.

A.2.1 . Results on Nash equilibria

Theorem 4. Let 0 be a continuous social choice rule, 0 : P' --> A, where
P = A = I, the unit interval in %, and k >_ 2. Let M = I be the message space
consisting of statements on bliss points of individual preferences . If the rule 0 is
Nash implementable by a regular game g : Mk --> A, then 0 is locally constant or
dictatorial (LCD).

Proof. Consider the reaction set Rp , corresponding to individual i with prefer-
ence pi E P, i.e., the set of message-profiles

Rpi

	

EMk : (mi(m-i), m- i) E arg max (pi(mi, m-r))} .
m;EM

This is the set of vectors m EMk such that agent is message is his or her
optimal response to the messages of the other agents, i.e ., to m_ i . It is
a generalization of the concept of reaction function . Figure 14 illustrates this
for two agents : the level sets of a game g : 92 --+ 933 1 are shown, and agent 1's
reaction set is the locus of points of tangency between these curves and
horizontal lines corresponding to strategy choices by agent 2.

The strategy of the proof is as follows .
1 . In step one we show that if preferences are such that a Nash equilibrium

message profile in M' is one at which no agent attains her bliss point,
i.e ., bi 0 g(m)Vi, then the social choice rule is locally constant in
a neighborhood of these preferences . This follows from two facts : that
bi :A g(m)Vi is an open condition, and that the profile of agent's
messages at a Nash equilibrium satisfies simultaneous optimality con-
ditions as each is a best response to the others . We show that these same
optimality conditions continue to characterize agents' best responses
for small changes in preferences, and that in this case the outcome of the
social choice rule must be locally independent of the agents' preferences .

2 . In step two we consider the case in which a Nash equilibrium gives as
an outcome the bliss point of one agent, and show that in this case the
social choice rule is locality dictatorial with that agents as dictator .

Step 1 . No agent attains her bliss point at a Nash equilibrium
Now consider the set T,, . = Rp - g -1 (b i), which is agent is reaction set

minus the preimage of her bliss point . 21 Let II- ; be the projection of a vector

21 Obviously, if b;~g(M') then T,,, = R,,. .
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in Mk onto all coordinates other than the i-th . Note that for any set of
strategies of players other than i, m- i EMk-1 , either this is in the projection
onto coordinates other than the i-th of the preimage of is bliss point, i.e .,
m-iGII-i(g -1 (bi)) or it is not, i.e., m_ i eII_ i(Tpi ) . In the first case, agent is
best response is obvious : it is mi . Consider next the second case and let
m_ i E II-i(Tnti ) . Since by definition of Tn _, the i-th . individual is unable to
obtain bi as an outcome of the game in response to m- i , is preference-
maximizing response is a message that minimizes the difference

g(mi, m-i) - bi,

by definition of the preferences pi in P.
For all m- i c M' - ', the manipulation set &m_ 1 22 is a connected set in 93 :

this is an application of the mean value theorem to the continuous real valued
function of one variable g(., m_ i) : I --+ R Therefore, since (mi, m-i) E g - 1 (bi),
the problem

min (g(mi, m-i) - bi)
m;EM

is necessarily equivalent to one of the following optimization problems :

a) max g(mi, m- i) if sup elm _ . < bi,
m;EM

22 We are using a script letter, -d, to denote the manipulation set in this section to
avoid confusion with the message space M.
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or

b) min g(mi, m_ i) if b < < inf ./&m_i .
m;EM

Since by assumption g is C"', any optimal m E Tn . satisfies first order
orthogonality condition on its gradient Dg. If (m i , m_ i ) is in the interior of M'`,
Mk, then

Dg J._ Nm _ i ,

where N�, _ i = {(mi, m_ i ) E Sk: mi EM} is the premanipulation set of agent
i given the strategies m_ i of other agents . It is the intersection of one
coordinate axis in 91k with Mk. Therefore, Dg 1 N�,_ i implies Dg i = 0 if
m = (m, mi) E Mk. If instead, m is in the boundary ofMk, OMk, then m belongs
to a face F# , i.e . a subset ofMk characterized by having all coordinates except
for those in the set fl c {1, . . . , k} constant, and equal either to zero or to one.
In this case, the orthogonality condition for optimality is

rI#(Dg)1 N,� _ i ,

	

(10)

where II I, denotes the projection map from ~Rk into 91f, the Euclidean space
with coordinates in fl . By definition, this latter orthogonality condition im-
plies that the i-th . coordinate of np(Dg) must vanish, i .e. that Dg i = 0 if i E /l .

Note that in addition to (9) and (10), the solutions to problem (a) and (b) must
satisfy second order conditions, and must be global . Let g( , m_ i ) : I -> I, and
m = (ini, m_ i ) be in T,, . . Then in the case of (a) a'g(m)/am? < 0 for all i . Now
taking g_ {i}, the regularity condition (1) implies gcm4i . Note that
(m, 9(m)) E gi 1(0i) since gi(m, g(m)) = (Dgi(m) + 9(m), 9(m)) = (9(m), g(m#
Therefore, by (1) gi (m, f(m))rhA i , i.e ., D(Dg i (m) + g (in)) :A Dg(m), implying
a 2g(m)/am? =A 0. Therefore, in the case of (a) if m E T,, .

Consider now a profile (Pi, . . . , fik ) in Pk and let 0(pi, . . . , pk) = c in A.
Since g Nash-implements by assumption, there exists at least one message
profile denoted m = m(Pi, . . . , fik) EMk, which is a Nash equilibrium of the
game form g with preferences over outcomes (Pi, . . . , pk), satisfying

9(m) = 0(ph . . . ,pJ
Now, by definition, m E nk_ 1 Rr . . Recall that, for each i, Rn . = TP _ U g - i (bi),
where b i = bi(pc) is the bliss point of Pi .

We shall consider first the case in which mfg-1 (b i ), and show that m is
a Nash equilibrium for any preference profile p in some neighborhood V of
p in Pk. Since g Nash implements 0, this will imply that for all p = (pi, . . . , fik)
in V,

O(A, . . .,pk)=9(m)=c
i .e . 0 is a constant on V.

a 2g(m)
am?

< 0. (11)

Similarly, in the case of (b)

029(m) 0 if m E
am :

> TP, . (12)
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Observe that the orthogonality conditions (9) and (10) (valid for Mk and
OM' respectively) are only dependent on the gradient of the game form Dg at
m, and not on the chosen profile P . With respect to the second order condi
tions (11) and (12) (associated with problems (a) and (b) respectively) these will
be satisfied in some neighborhood w of p in P' when they are satisfied at P,
since they are open conditions : small variations of the preference profiles p in
W are associated with small variations of the corresponding bliss points
(b l , . . . , bi ), so that if for some j and m;, sup(F(ml)) < b;, then sup(F(m)) < b;),
for b; = b;(p;), and pi in a e-neighborhood N, of P;, and if for some i and
m; inf(F(m,)) > bi , then inf(F(m,)) > bi for bi = bi(pi), pi in an e-neighborhood
N, of pi . Note that the e's of N can be chosen uniformly (for all m; in M' - ')
because of the compactness of Mk- ' .

Hence m satisfies both first and second order conditions for all profiles p in
a neighborhood W of P. In addition, the components of m will be globally
optimal responses for all profiles near enough to p.23 It follows that f is
a Nash equilibrium of the game form g for all profiles of preferences p in some
neighborhood V of p, V c W. Thus 0 is locally constant at P in this case.24
This completes step one of the proof.

Step 2 . is bliss point is a Nash equilibrium .
Consider now the case in which the Nash-equilibrium set of messages

m associated with a profile p = (p l , . . . , pk) is in g -1 (bd), for some d = 1, . . . , k .
We shall show that in this case the social choice rule 0 is locally dictatorial .
Note that if m E g -1 (b i )ng -' (b;), then bi = b;, since the hypersurfaces of
a function do not intersect .

We now show that if for all i, j = 1, . . . , k, bi =A b;, then there exists
a neighborhood U of P in Pk such that the Nash equilibria corresponding to
any profile p in U(p), m, are also in g - '(bd), where bd = bd(Pd) is the bliss point
of the d-th . preference Pd in p . Since g Nash-implements 0, this implies that by
in U(p), 0(p l , . . . , pk ) = g(m(p)) = bd , i .e . 0 is locally dictatorial at p, with
dictator d . This would complete the proof that 0 is LCD when it is Nash-
implementable by a regular game.

Since MW E g -1 (bd) by assumption, if m EMk it follows that for q _
{1, _. . . , d - 1, . . . , k{ (the set of integers from 1 to k with d deleted) the couple
(m, bd) E 9~ 1 (An ) i .e .,

(Dg,, (in) + g(m), . . . , Dg,,-, (m) + 9(m), 9(m)) = (bd, . . . , bd ) E On,

since g(m) = bd, and for all agents j =A d messages will be chosen to satisfy
orthogonality conditions . By the regularity assumption (1) g, rh 0,,, and g,, rh Du
for any p c ri, implying that the map 8g,,, the restriction of g,, on a(M' x I),
satisfies g,, rh 0,, .

23 Suppose sup(F(ml)) < b; . Then as noted above sup(F(m.,)) < b; for b;(p;), p; in NE of
p; . Hence if m; solves the problem max �,jrm g (m.;, m;) globally, then it is the globally
optimal response for any pi e pi .
za One can actually show that ifm c ni -,, . . . , k T,,_d pi c p, then 3 a neighborhood N of
p such that m c n i -,1,...,k T,, ; Vpi e p in N(P). Since in e n i -, , . . . , k T,) ;, then by definition
g(rn) :A b id b i corresponding to the profile p;, i .e ., rn~ u ;-,,

,,...,k9-'(b;)
for b; sufficiently

close to b; . Thus m E Rp; - 9_'(b,)'dpi E p E N(P), thus implying by definition that for
all peN,men,-,, . ..,kT,,PiC-P .
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Now, gn : Mk x I -j 9Jk, and 0,, is a one dimensional submanifold of 91k .

Therefore, by the transversality theorem [14, 1974, p . 60], gn 1 (A.) is a one
dimensional submanifold of M k x I (possibly with boundaries and corners) .
Therefore, there exists a neighborhood"of (m, bd) in Mk x I and a C 1 curve
bd -> (m(bd), bd), for all bd E Hk+ 1(U), the projection of U onto its k + 1-th .
coordinate, such that (m(bd ), bd) is contained in gn 1 (4,,), i .e .

g(m(bd)) = bd and Dg,, (m(bd)) = . . . = Dg,,,-, (m(bd)) = 0.

We shall now show that U can be chosen sufficiently small that the C 1
curve m(bd) in Mk consists of Nash equilibria corresponding to preference
profiles p = ( p 1 , . . . , Pk) in some neighborhood of P in Pk.

We know that for all j in q, Dg;(m(bd)) = 0 because (m(bd), bd ) E gn 1 (A,,) by
construction . Therefore all message profiles in the curve m(bd) = II-(k+1>(U) (--
Mk satisfy the first order conditions (1) (which are independent of the prefer
ence profiles) . Recall that II _(k+1) is the projection map on all coordinates
but k+1 .

Consider now a profile p of the form (p 1 , . . .

	

Pd, . . .

	

Pk) where all but the
d-th . preference are as in the profile p, and such that the bliss point bd
corresponding to Pd is in Ilk+1(U), the projection of U onto its k + 1-th .
coordinate . Then when U is sufficiently small, m(bd) is a Nash equilibrium for
(P1) . . . ,Pd, . . . ,pk) . To see this, note first that g(m(bd)) = bd , so that the d-th .
individual strategy is indeed optimal . Next note that m(bd) satisfies the first
order conditions (9), (10) as shown above, and the second order conditions (11)
and (12) corresponding to problems (a) and (b) by the openness of these
conditions . By continuity and an argument similar to step one and that in the
last footnote above, U can be chosen small enough that m;(bd) is globally
optimal for j =A d . This proves the point .

We have therefore shown that any message m(bd) in the curve m(bd) c

II_(k+1)(U) is a Nash equilibrium for a preference profile p =
(P1) . . . , Pd, . . . , Pk) in a neighborhood U Of p E pk, where bd is the bliss point of
pd . Furthermore, we have also shown that any message in the curve m(bd) c

II_(k+1)(U) is in the set TP for all j within the set of indices 11, where P; is the
j-th . preference in the profile (p 1 , . . . , pk) .

This implies

	

that to each

	

preference profile of the form p =
(P1, . . . , Pd, . . . , Pk) in a neighborhood U of p, corresponds to a Nash equilib-
rium in the curve m(bd) = II _(k+ 1)(U), namely m(bd). Note that there could be
Nash equilibria other than m(bd) associated to P. However, in order to know
the value of 0 at p it suffices to know that m(bd) is a Nash equilibrium of p :
as g Nash implements g,

O(P) = g(m(bd)) = bd

	

for all p in N of the form p = (p 1 , . . . ,Pd, . . . ,Pk)

We now use the results of step 1 above.
Given that m(bd) is a Nash equilibrium for P, and that d is a dictator at

m(bd), it follows that for all j =A d, m(bd) must be in T~ . But as we saw in step
1 this implies that there exists for all j =A d an E-neighborhood N; of Pi such that
m(bd) 'Sin R,,, for any pi in N . We have therefore proven that for all profiles
p = (p1, . . . , Pd, . . . , Pk) in some neighborhood W of p in Pk there exists a Nash
equilibrium in II_(k+1)(U), namely m(bd), where bd is the bliss point of Pd .
It follows by construction of the curve m(bd) that for all p in W,
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0(p) = g(m(bd)) = bd, so that 0 is dictatorial in W, with dictator d. This
completes the proof of step 2, when rim EMk . A similar proof applies for
m E OM', e.g . m E F,, c Mk, where F,, is face in Mk with all coordinates but
those in n constant, since condition (1) applies for all g. This completes the
proof of the theorem.
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