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A brief proof of the existence of an equilibrium in incomplete markets is given for
regular economies (Theorem 1) ; a robust example of such economies is provided . Theorem
2 establishes that the manifold fl of global pseudo-equilibria is a fiber bundle with the
topological structure of a one- or two-fold covering space of G k . ", the space of k planes in
R", where k is the number of assets in the economy and n the number of states of
uncertainty . In particular, the pseudo-equilibrium manifold dZ is not contractible with
incomplete markets . This contrasts with the case of complete markets, where the equilib-
rium manifold is always contractible .
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Two fundamental problems in economics are the existence of a market equilib-
rium and the structure of the manifold of equilibria . Both have been resolved
satisfactorily in standard Arrow-Debreu markets : simple proofs of existence have
been provided, and the equilibrium manifold is known to be contractible (Balasko,
1975) .
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Matters are quite different in markets that have an incomplete set of assets . All
known proofs of the existence of an equilibrium are rather complex, and nothing is
known of the structure of the pseudo-equilibrium manifold.' To extend the
classical case, this paper provides a brief proof of existence of an,equilibrium in
markets with an incomplete set of assets (see Daffie and Shafer, 1985, and Radner,
1972), and determines the global topological structure of the pseudo-equilibrium
manifold in such markets .

Theorem 1 provides a brief proof of existence of a pseudo-equilibrium.
Theorem 2 studies the pseudo-equilibrium manifold and establishes a substantial
departure from the structure of equilibria in economies with complete markets .
When markets are complete, the equilibrium manifold is always topologically
trivial . By contrast, we demonstrate in Theorem 2 that with incomplete markets
the pseudo-equilibrium manifold fl is in general not contractible, and provide
examples .

Our proof of existence of a pseudo-equilibrium is similar to standard proofs for
proving the existence of an equilibrium with complete markets . To achieve this,
the proof of Theorem 1 relies on the existence of a continuous selection from asset
returns to spot prices ; Z Proposition 2 establishes that such a selection exists in
regular economies . 3 The appendix provides a robust example of regular economies
with incomplete asset markets which satisfy all the conditions in Theorem 1 . Our
proof of existence therefore applies to a robust set of economies .

Theorem 2 gives a topological characterization of the manifold of pseudo-equi-
libria : this is a more demanding task than the proof of existence, requiring
algebraic topology . Theorem 2 proves that the pseudo-equilibrium manifold Sl is a
fiber bundle over the manifold of k-dimensional subspaces of R", denoted Gk,",
where n is the number of states and k is the number of assets, 4 and that fl is
topologically equivalent to a one- or two-fold covering space of Gk'", and is equal

I The pseudo-equilibrium manifold is equivalent to the equilibrium manifold in Arrow-Debreu
markets. It describes all the pseudo-equilibrium spot prices and asset returns which obtain by varying
the economy's initial endowments and real assets ; see Subsection 4.3 .

2 Our existence result does not add generality to the proofs of existence available . Rather, it aims to
show that, in regular economies, proving the existence of an equilibrium with incomplete markets is
similar to proving existence in complete markets. The only addition required is a fixed-point-like
theorem on subspaces of R".

3 Regular economies with incomplete markets are a natural extension of the concept of regular
economies defined by Debreu for Arrow-Debreu (complete) markets. The condition required in
Lemma 1 is that a Jacobian of the excess demand function is non-zero at the set of prices and asset
spaces which clear the markets. When markets are complete, this is simply Debreu's condition of
regular economies.

4 The space of all k-dimensional subspaces of n-euclidean space is also called the (k, n) Grassma-
nian manifold and is denoted Gk.n . After refereeing and editing this paper for the JME, Wayne Shafer
extended our results to study the orientability of the pseudo-equilibrium manifold, and the structure of
the manifold for a given, fixed asset structure, in a note `Note on the pseudo-equilibrium manifold',
December 1993 .
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to either G k'", or to the manifold Mk," of oriented k planes in R" . These two are
classical manifolds with a relatively well-known topological structure : neither is
contractible in general, and we provide examples . Therefore the pseudo-equi-
librium manifold l is generally not contractible . When the market is complete
(k = n) the standard result is recovered : Theorem 2 implies the contractibility of
the equilibrium manifold in Arrow-Debreu markets because G"'" = M"'" = R".

2. Economies with incomplete asset markets

2 .1 . Definitions and notation

An economy has m commodities and two periods (t = 1, 2) . Uncertainty is
represented by n states in the second period . In period 1 there are m spot markets,
and securities markets for assets that pay bundles of m commodities in period 2 . s
An economy E consists of J traders, indicated g = 1 . . . J, each with a utility
function Ug over consumption in both periods, an initial endowment wg in the
interior of the positive orthant in R', denoted R+ + , where r = m X (n + 1), and
an asset structure a = (a" . . ., a k) E

Rkx mx
n, which is a collection of k real

assets, k<_ n, each asset denoted a` ER"'" ", 1 < i 5 k. 6
There are r = m X (n + 1) spot markets . For every spot price pE0 = { p E

R' : p >> 0 and ~I p 11 = 11, the asset structure enables us to calculate the value at
that price p of the asset i in state s, a'(s), i .e . ( Ps, a'(s)) : An asset return matrix
consists of k vectors (v i } of dimension n each, vector vi denoting the value at
prices p which one unit of the asset gives in each state s = 1 . . . n in period 2,
v i = v i(1) . . . vi(n),

	

where

	

bti = 1 . . . k, v i = ( ps, a'(s)> .

	

The

	

vectors

	

( vi )i-1 . . . k
define a subspace of R", denoted

	

L. We denote by [ v 1 , . . . , vk ] or simply
[ vi li= l . . . k the linear span of the vectors ( vdi= 1, . . . . k . Given an asset structure a,
for each vector of spot prices p E0 there is an associated space of asset returns
L(p, a) c R" of dimension at most k. Let Rk,n denote the space of all k linearly
independent vectors in R", also called `k frames' .

Definition 1 . We say that a map f : 0 X R" xk --3- Rmx ("+ 1) is homogeneous on
R",k if f( p, [ vl, . . . , vk1) =f(p, [wl, . . . IND whenever the sets of vectors (v i)
and (wi) have the same span L, i.e . when [ v 1, . . . , vk l = [w1 , . . . , wk 1= L, in which
case we denote the map f(p, L).

5 Called real or physical assets.
6 A unit of asset ai entitles the holder to the vector a'(s) E R' of commodities in period 2 if the

state s E { 1 . . . n} occurs .
7 Continuity of a homogeneous function f on Rnx k is defined with respect to the standard

proximity criterion : the distance between two spaces L of R" is the infimum of the distances between
all orthonormal bases for the two spaces .
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Given initial endowments wg , an asset structure a, and utilities Ug , the excess
demand is defined as a homogeneous function of spot prices p and of the
corresponding asset returns L. In an equilibrium, all prices and returns must be
compatible with each other, and all markets must clear : therefore an equilibrium is
a vector of spot prices p * EA and a space of asset returns L* c R", at which the
excess demand in all the spot markets is zero, and the equilibrium asset returns L*
are those corresponding to the equilibrium spot prices p * .

2.2 . A standard economy with incomplete assets

It is helpful to formalize the economy E in a standard abstract fashion (see, for
example, Hirsch et al ., 1990), considering the excess demand function and the
asset structure as the primitive concepts . The economy is therefore characterized
by .
® An excess demandfunction : this is a continuous homogeneous function Z : A X
R ",k -+ R', assigning to each spot price p E A and each k-dimensional space
L = IV,, . . . , v k ] c R" of asset returns the excess demand vector of the economy
in all spot markets, and satisfying :
(i)

	

p.Z(p, L) = 0 for all p E A (Walras' Law);
(ii)

	

there is b E R' such that Z(A X R ",k) >_ b, i.e . excess demand is bounded
below ;

(iii) If (pm , Lm ) E A X Rn,k,
(pm , Lm) --)- (p, L) and p 0-

A,
then

11 Z(p, Lm ) 11 --+ cc, i .e . when a spot price goes to zero, the norm of the
excess demand vector increases beyond any bound .

" k asset return functions fl : A --+ R", 1 <_ j :!-< k, describing for each set of spot
prices, the returns of the k assets in the n states, which is any continuous
function f : 11 -> R" with f = (f, . . . fk) ; where f,. : A --* R".

The economy E is therefore defined as :
E = {Z : A X R n,k -~ R' satisfying (i), (ii) and (iii), and a continuous function
F :A--->R",
f= (f . . . fk ), where fi : A -), R") .

3 . Existence of a pseudo-equilibrium

We prove the existence of a pseudo-equilibrium in two steps. The first step is to
show the existence of a vector of spot prices p which clears all markets for each
given asset returns space L . This establishes a correspondence from asset returns
to spot prices . Under the additional assumption that this correspondence has a
continuous selection, the existence of a pseudo-equilibrium is established in a
simple fashion in Theorem 1 below. The usefulness of this proof hinges of course
on the existence of a continuous selection from spaces L to spot prices p. We
prove in Proposition 2 below that such a continuous selection exists in every
regular economy, and in Lemma 1 we prove that the property of being a regular



G. Chichilnisky, G. Heal/Journal ofMathematical Economics 26 (1996) 171-186

	

175

economy is robust, i.e . it is satisfied on an open set of excess demand functions
which define the economy . Therefore our proof of existence is valid for a robust
set of economies .-

3.1 . What is a pseudo-equilibrium?

Consider the economy E defined in Subsection 2.2 . When k < n there are
fewer assets than states, and E is called an economy with incomplete asset
markets . A pseudo-equilibrium is a vector of spot prices p * at which all markets
clear, and such that the net trades at the prices p * are feasible at the asset returns
arising from these spot prices . When markets are complete this definition coin-
cides with that of a competitive equilibrium. Formally :

Definition 2. Given the excess demand function Z : A X R",k -+ R r, and the asset
return functions fi : A R", a pseudo-equilibrium is a spot price vector p * in A,
and k asset returns vi , . . . , vk spanning a subspace L* of R", such that: (a) spot
markets clear at the spot prices p * and assets returns L* , and (b) the returns on
the assets which arise from the spot prices p * , v, = f,(p * ), . . . , vk =fk(p * ), are
contained in L* .

It is worth noting that part (b) of the definition of a pseudo-equilibrium does
not require that the span of the vectors v I, . . . , vk should equal L*, but rather that
it should be contained in L . The intuition behind this definition (Duffle and
Shafer, 1985) is that generically on endowments and return matrices, the vectors
v' =fl(p * ), . . . , vk =fk(p* ) are linearly independent, so that their span is actu-
ally equal to L* .

3.2 . A simple result on spot prices

Proposition 1 below establishes the existence of a vector of market-clearing
spot prices p * for each fixed asset returns space L c R", namely a vector of spot
prices satisfying part (a) of the definition of a pseudo-equilibrium . Proposition 1 is
not a proof of existence because to prove existence one must establish not only (a)
but also (b) : the full existence proof is given in Theorem 1 below. Problem (a) is
identical to that of establishing the existence of a price equilibrium in complete
markets, and it is proven with the same standard techniques :

Proposition 1 . Consider an economy with incomplete asset markets E. Under
assumptions (i), (ii), and (iii) on the excess demands, for each k-dimensional
space of asset returns L CR", there exists a spot price p * (L) which clears spot
markets, i . e. such that Z( p * ( L), L) = 0.
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Proof. By assumptions (i), (ii) and (iii), for each given L, the excess demand
function Z(p, L) : A--+ R' is continuous, there exists a b in R' such that
Z(0, L) >- b, and furthermore if (p,n , L) -), (p, L) with p 0 0, then 11 Z(p n, L) 11
-3- oc . Under these conditions, the existence of an equilibrium price p * (L) is
ensured by standard arguments ; see, for example, Theorem 8 in Debreu (1982).0

Proposition 1 therefore establishes the existence of a non-empty correspondence
T : R",k -~ 0, which assigns to each (V11 . . . , vk ) E R' , ', a price p in 0 at which
markets clear and where agents face asset returns given by L= [ vi]; T is clearly
homogeneous, i.e . T([ v . . . . . . vk ]) = '`h([W. . . . . . W'D if [Vi] = [Wi] .

3.3. Regular economies

In certain economies Proposition I can be sharpened to the existence of a
function, rather than a correspondence, from asset return spaces L to equilibrium
spot prices p(L) . We shall consider the following property, which is proven to be
robust in Proposition 2 below :

(iv) There exists a continuous homogeneous map I' : Rn,k -> R` assigning to each
k-dimensional subspace [ v t, . . . , vk ] = L of R", an equilibrium price r(L) in
0 . Such a function is a continuous selection of the correspondence T of
Proposition 1 .

Property (iv) is automatically satisfied when the economy E has a complete set
of assets (k = n) . s

When does an economy with incomplete markets satisfy condition (iv)? Propo-
sition 2 below answers this question : it shows that condition (iv) is always
satisfied when the excess demand function Z of the economy varies sufficiently
with changes in spot prices . Such economies are called regular economies, and are
defined formally as follows.

Definition 3.

	

An economy

	

is

	

called

	

regular

	

when

	

S = {(p, L) c 0 X
R",k : Z(p, L) = 0) is a manifold, and the Jacobian of the excess demand function
Z with respect to spot prices p, 8Z(p, L)/8p, contains an (r - 1) X (r - 1)
submatrix with non-zero determinant V(p, L) E S. In complete markets, i.e . when
k = n, this is the standard definition of a regular economy .

Arrow-Debreu economies are regular generically on endowments ; this result
was established by G. Debreu and S . Smale in 1970 . Since the economy E is
defined in subsection 2.2 in terms of its excess demand function Z, it is
appropriate to refer to the assumption of regularity in terms of excess demand .

8 In this case the space of all subspaces of dimension n in R" consists of one element, namely (R") .
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Lemma 1 . The property of being a regular economy is robust with respect to
excess demandfunctions .

Proof. The value (0) is a regular value of the smooth map Z : A X Rk.n --+ R'
generically on excess demand functions ; this follows from standard transversality
theory 9 (see also Duffle and Shafer, 1985) . Therefore S, which is the inverse
under Z of (0) is a manifold generically on Z: this is the global version of the
implicit function theorem (see Abraham and Robbins, 1967) . An economy is
regular when the Jacobian of its excess demand function with respect to the
variable p is transversal to S, a property which is clearly open on excess demand
functions .

Proposition 2 . A regular economy E satisfies property (iv) .

Proof. See the appendix .

3.4. The existence ofa pseudo-equilibrium

The next theorem provides the proof of existence of a pseudo-equilibrium .

Theorem 1 . Consider an economy E with incomplete asset markets, i . e . k < n .
Under conditions (i), (ii), (iii), and (iv) there exists a pseudo-equilibrium for E.

Proof. Condition (iv) ensures that there exists a continuous homogeneous function
I' : Rn,k __,, A from asset returns L to spot prices p E A, L ---> p(L), such that
Z(I'(L), L) = 0. Consider now the k asset return functions (see Subsection 2.2)
fl, . . . , fk , fi : A -> R n , and define the composition maps

gi = ff ° I ' , gi : Rn,k ,+ Rn.

We now use the following `fixed subspace property' : If h1 : Rn.k -), Rn, 1 _< j S
k, are continuous homogeneous functions, then there is always a k-dimensional
subspace

	

L = [ v I . . . v k ]

	

of

	

Rn

	

such

	

that

	

`dj, hi(L) E L . 10

	

Since

	

the

	

maps
gi : Rn,k -), Rn, i = I,-, k, defined in (1) are k continuous homogeneous maps,
by the `fixed subspace property' there is a k-dimensional subspace L* of Rn such
that g`(L* ) E L* for all i . The corresponding vector (r(L* ), L* ) satisfies the
definition of a pseudo-equilibrium, completing the proof of existence . ' 1

	

0

9 The space of smooth demand functions from A X R'kx n - R' is endowed with the standard
compact open topology . In this context a property is called robust when it applies to an open set . For
more details on both issues see Abraham and Robbins (1967) .

1° See Theorem 2 in Hirsch et al. (1990), or Theorem A in Husseini et al. (1990) .
11 This method for proving existence was suggested, but not executed, in Husseini et al. (1990). They

state that "they had no hope to prove continuity of spot prices as a function of asset returns", an issue
which is resolved in this paper, see Proposition 1 and the proof in the appendix .
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4. The structure of the pseudo-equilibrium manifold

In this section we characterize the topological structure of the pseudo-equi-
librium manifold f , and show that it is not contractible .

4.1 . Definitions

Each real asset matrix a can be represented by a vector a in Rkx'"'" ; there are
k assets, indicated by i = 1 . . . k, and each asset a` is an m X n matrix, a'= {(a')j},
where s varies over the states s = 1 . . . n, and j varies over the commodities,
j = 1 . . . m. Let p E R

'
x " be a vector of second-period prices, A 2 be the space of

all second-period prices, i .e . the strictly positive vectors in the unit simplex in
R"',n, and let p 0 a be the matrix of asset returns . 12

Given two topological spaces, X and Y, we say that X is a covering space of
Y if there exists an onto map 0 : X --+ Y such that, for each y E Y, there is a
neighborhood Uy in which the inverse image 0 -1 (UY ) is the disjoint union of sets
in X each of which is homeomorphic to Uy. For example, the following map 0
from the line to the circle, 0 : R -> S', 0(r) = ei,r is a covering map which makes
the line R' a covering space of the circle . When the inverse image of each point y
has exactly k >_ 1 points, then the covering is called a k-fold covering . We denote
by Gk," the classic manifold of all k-dimensional subspaces of R" with the
obvious topology, called a Grassmanian . Its manifold structure is described in the
appendix . We denote by Mk,n the space of oriented k-subspaces of R"; this space
differs from the Grassmanian Gk," only in the choice of orientation of the
coordinates of the subspaces ; this differentiates all changes of coordinates with
determinant equal to 1, from those with determinant equal to -1 (see Steenrod,
1951, p. 35) . It is inwaediate that the natural projection Mk," --> Gk," is a 2-fold
covering (see Steenrod, 1951, p. 35, and Singer and Thorpe, 1967, p . 62).
A space X is called a strong deformation retract of another Y if X c Y and

there exists a continuous map F : Y X [0, 1] --)- Y s.t. Vy E Y, F(y, 0) = y and
F(y, 1) = x E X, and F(x, t) = x for all x E X, and all t . If X is a strong
deformation retract of Y, then we say that X and Y are topologically equivalent,
denoted X = Y. In particular, when X = Y, they have the same homotopy groups
-rr;(X) = 7r;(Y) for all i >_ I (Spanier, 1966).

4.2 . The space of real asset matrices Akx-xn

Since

	

many

	

asset

	

matrices

	

a E R kx m x n

	

yield

	

the

	

same

	

asset returns
qk) c Rkx ", from an economic point of view there is substantial duplica-

12 Let-p=p(1), . . .,p(n), where Vs, p(s) =(p(s)1-i . . . .)ER"' . We define p0a=(g 1 . . .q k)ERkx n where `d i = 1 . . . k ; q'= (q'), 1 : . .,; E R"; (q')s = E; ~( p(s))-(a')S. For each p E O 2 , the map
'0' maps an asset matrix aE Rkx ' x " to a matrix of asset returns, (q l . . . qk) E Rkx n .
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tion in representing the space of asset matrices as R kx mx n . To parameterize the
space of pseudo equilibria, it is useful to have a minimal representation for the
space Akxmx" of asset matrices . We proceed in two steps . In the first we construct
a space that contains all the relevant information about real assets, and in the
second step we find a unique description of a real asset within this space .

First consider a subspace Skx,X" = (a E RkXmXn : a = (a' . . . ak), (a')s * 0 ~,
j = s) . Note that Skxmx" can be identified with either Rk X " or RkX m . The
following lemma shows that the set of asset returns that arise from asset matrices
in Rkx m X n via the map 11, is the same as the set that arises from applying the
map O to matrices in SkX m X n. In other words, there is no loss of information
from restricting our attention to the space of asset matrices SkXm X":

Lemma 2. Consider any asset matrix a ERkX mx " . Then VpE 02 with the first n
components of p non-zero there exists an asset matrix b E Skxmx n such that
p0a=p0b.

Proof. Consider first the case in which m >_ n, i.e . there are at least as many goods
as states . Let p = p(1), . . . , p(n) E A2, where bas = l, . . . , n, p(s) =
(p(s)j=, . . . m) ERm. Now define k m X n matrices b = 0 1 , . . ., bk ) by (b') =
(b')s, j= s= 1, . . .,n, where

m
if .j=s,(b')s-(p(S)j)-'p(S)r)'(a,)s(+

r-)JJ1

(b') s = 0 otherwise .

Then a O p = b O p. Now consider the case in which m < n. A similar construc-
tion works if we partition the matrix (a')S, s = I,-, n & r = I,-, m into
k m X n submatrices .

	

O

We have shown in Lemma 2 that it suffices to restrict our attention to asset
matrices in S; however, within Skx mx n there is still considerable duplication,
since two matrices a = (a' . . . a k ), b = (b. . . . . . bk ) E SkX mx n define the same
asset returns space L EG k," for every p E A 2 when the set of vectors (a')i-, . . . k
and (b'),= , . . . k have the same span within the space R", and therefore, in practical
terms, the two asset structures a and b are the same. For this reason, to obtain a
minimal representation for the space of asset returns, it suffices to restrict our
attention to the space of all k subspaces of R", which is G k'" . Therefore in what
follows we work with the space of asset matrices Akx mxn - Gk,n cRkx n . We Use

for Akxmx" the same system of charts (WQ , yQ} for Gk " as defined in the
appendix, but use the notation AkXm x n for asset matrices to differentiate it from
the space of asset returns.
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4.3. The pseudo-equilibrium manifold

The pseudo-equilibrium manifold is defined by fl = {(p, L, w, a) E A X Gk,n
XR+JX AkX m""; (p, L) is a pseudo-equilibrium for the economy with endow-
ments and asset structure (w, a)} ; under appropriate regularity assumptions that
we adopt here, fl is a manifold (Duffie and Shafer, 1985).

For each initial endowment vector w = (w 1 , . . . . wj ), wi ERr, spot price vector
p E A, asset matrix a E Akx m x" and asset return space LC R", denote by
z i(p, L, wi , a) ER'"("+') the demand of agent i with endowments wi , facing
prices p, asset returns L and asset structure a . There are J traders . For fixed
(a, w), summing over all agents i we obtain E;- j zi(p, L, w, a) - wi] = Z(p, L);
this is the excess demand of an economy with initial endowments w1 , . . . , wj and
with asset structure a, which we assume to be C2, i.e . twice continuously
differentiable .

4.4. The structure of the pseudo-equilibrium manifold

Consider now an incomplete market economy E as defined in Subsection 2.2 :

Theorem 2. Under conditions (i)-(iv), the pseudo-equilibrium manifold fl is a
covering space for a fiber bundle over the Grassmanian manifold Gk ." . The
manifold ft is topologically equivalent to either the Grassmanian manifold Gk.n
or to the manifold of oriented k-subspaces in R", M k . " . In general the pseudo-
equilibrium manifold f is not contractible when the market is incomplete, i . e .
when k < n and n > 2. However, when the market is complete, i . e . k = n, then the
pseudo-equilibrium manifold is SZ - G"'" =M,,n = (R"), and therefore con-
tractible .

Proof. The proof follows a simple and general line, which can be described
informally as follows : we consider a smooth map F : X X Y -+ Z which defines a
manifold by F(x, y) = 0. For every x, y we show that the Jacobian JFX with
respect to x is a locally constant square matrix . Then we show that this implies
that the manifold defined by F(x, y) = 0 is a covering space of Y .

To apply this reasoning to our case, the proof has three steps . Step one is to
define the map F; F is defined first locally, for each chart system of the manifold
Gk . ", and then globally . Step two then shows that the appropriate Jacobian is
locally constant. The final step is to show that the covering covers a fiber bundle
over the Grassmanian Gk,n or over the space of oriented planes M k'" .

The first step is to construct a smooth map H which assigns to each
(p, L, w, a), the excess demand vector of the economy, Z(p, L, w), and a
k-subspace of R". This is done first locally : for each coordinate chart (WQ , y,,) of
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the manifold G k, n X A"',x n, we define H,, : A X WQ X R rX J X AkX m X n -~, Rr X
RkX(n-k) by

HQ(p, L, w, a) = (Z(P, L, w), KQ(P , L, a)) ,

	

(2)

where Z is the excess demand of the economy, and where the map

K,, : (A X WQ X RkX(n-k)) --+ RkX(n-k)

is defined by
KQ ( P, L, a) = [ I I y,(L)] Po(P2 11 a),

[I I yo(L)]PQ being the coordinate representation of L in the coordinate chart
(WQ , (PQ) .

The map HQ has 0 as a regular value (Duffie and Shafer, 1985, Section 6, fact
8, p . 295) . The zeros of HQ define the manifold of pseudo-equilibria l ; this is
because the zeros of any two maps HQ and H,,, are the same on the intersection
of each two charts WQ and W,,, so that fl is indeed a manifold 13 (Duffie and
Shafer, 1985, fact 4, p . 295).

The second step is to show that in each chart WQ , for each spot price p E A,
asset return matrix L E WQ and vector of endowments for all but the first trader
w-' ERrX(J -

'), namely for each (p, L, w - '), there exists a globally invertible
map 0" o, (p, L, w-') : Rr X RkX(n-k) -3, R r X R kX (n-k) defined by

OQ,(p,L,w-`)(wl, a) =H,(P, L, w-I, w', a),

with a continuous inverse . '4 This second step follows from the fact that, for each
( p, L, w- ' ), the corresponding Jacobian of OQ , (p , L, w-' ) with respect to the
variables (w', a) is a constant matrix of rank r + (n - k) X k (see Duffie and
Shafer, 1985, p. 295, proof of fact 8) . The map O, (p , L, w -' ) is therefore globally
invertible, and it defines, in particular, a unique inverse for {0} E Rr X RkX(n-k)

i .e . a unique endowment vector w' and a unique asset matrix a in AkX m Xn

denoted (wQ, a,,,)= AQ(p, L, w- '), which vary continuously with (p, L, w - ' ),
and satisfy HQ( p, L, w- ', wQ, aQ) = 0, or, equivalently, ( p, L, w - ', WQ, a(,) E
f .
We have therefore constructed a continuous function Aor :[A X RkX (n-k) X

RrX(J- t)] -+ R r X R'X(n-k), where AQ(p, L, w- ') = (w,, aQ ), and where
HQ(p, L, w- ', A Q(p, L, w- ' )) = 0. The existence of the map AQ implies that
for any L E WQ , each element (p, L, w, a) E 0 can be represented uniquely as
(p, L, w- ' , A Q(p, L, w- ' )), i .e . the manifold defined by fl, = 0 rl JA X WQ X
RrXJ X AkXmXn7 can be parameterized by [A X RkX(n-k) X Rr(J-1)]. In other

'3 The zeros of the map HQ are the zeros of the excess demand vector Z, and the subspaces in Wo
which contain p2 O a, where p2 is the second-period prices of the vector p (=- A. The latter property is
satisfied because a subspace L in W,, contains p2 O a if and only KQ(p, L, a) = 0, since [I I cpQ(L)1 P,,
is the representation in the coordinate chart (WQ , (pa) of the space orthogonal to L.

14 Here we use the notation w=(w-1 , w').
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words, there

	

is

	

a map

	

OQ : fQ --, [0 X RkX(n-k) X R rX(J-1) ] defined by
OQ (p, L, w, a) = OQ(p, L, w - ', AQ(p, L, w - ')) = (p, L, w -1 ) which is one
to one, onto and has a continuous inverse . This completes the second step .

The final step is to show the covering structure . As already noted the zeros of
any two maps HQ and HQ , are the same on the intersection of any two charts W,
and WQ,, so that by the definition of AQ , for every two coordinate charts o- and Q'
of -Gk ,n, if L F= WQ f1 Wo,, then

AQ(p, L, w-1)=AQ,(p, L, w - ') .
The collection of maps (A Q]Q E y therefore defines a smooth map A :[A X Gk,n X
RrX ( J- ')] -+ Rr X G k ' n , and the corresponding collection (0Q], E

	

defines a map
O : n --), A X Gk,n X RrX (J-1) . The map O

	

is locally invertible because VQ;

O/fl Q = OQ , and, as we saw, E),, : fl, -). [0 X RkX (n-k) X RrX(J- 1)] is one to
one and onto . Since for every chart indexed o- the map OQ is a homeomorphism,
it follows that for each neighborhood

U(P,L,w1)
of ( p, L, w-1 ) in 0 X Gk,n X

R rX (J-1) there exists at most a finite number of disjoint neighborhoods VQ in fl,
each V, homeomorphic to (U(p,L,w-~)) under O, potentially one such neighbor-
hood VQ for each coordinate chart of G k 'n . By definition, this means that
O : n -3- A X Gk,n X RrX(J-1 ) is a covering map (Singer and Thorpe, 1967, p. 63,
section 3.3) : But 0 X Gk,n X RX ( J- ') is a fiber bundle over Gk,n with fiber
0 X Rr X (J-1 ), and is topologically equivalent to the Grassmanian Gk.n because
both A and RrX (J-1) are contractible . This completes the proof of the first part of
the theorem.
Now for all k, n > 2 with n - k > 1, the first homotopy group of G k, n, denoted

"rr 1(Gk 'n ), is cyclic of order 2, i .e . it 1(Gk ' n ) = Z2 (see, for example, Steenrod,
1951, p. 134, 25.8, theorem) . Since 7r 1(G k ' n ) = Z2,

Gk'n has only two possible
covering spaces up to a homeomorphism, namely a one-fold and a two-fold cover,
each corresponding to the two subgroups of Z2 , (0] and Z2 itself (see, for
example, Singer and Thorpe, 1967, theorem 4, p . 71) . Therefore either fl is
topologically equivalent to G k ' n , or alternatively fl is the simply-connected
covering space of G k ' n , which is the space Mk,n of oriented k-planes in Rn (see,
for example, Steenrod, 1951, p. 134 and 7.9) .

Example of pseudo-equilibrium manifolds . To show that in general the pseudo-
equilibrium manifold f is not contractible, we provide examples for any n > k
and k = 1 . By the results of Theorem 2, it suffices to study the topology of the
manifold Mk,, of oriented k-planes in Rn and of the Grassmanian Gk'n . Both
spaces are connected and the former is a two-fold covering of the latter having as
a fiber the 0-sphere (see, for example, Steenrod, 1951, 7.9, p. 35) . Since Mk'n is a
covering of G k ' n , Vj > 2, all homotopy groups 7r1(M k 'n) = ir1(G k ' n ) (see Spanier,
1966), and therefore it will suffice for our purposes to analyze the topology of
Gk,n

For k = 1, G''n is the projective (n - 1)-space P n- 1, defined as the quotient
space of the (n - 1)-sphere Sn-1 obtained by identifying antipodal points (see
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Greenberg, 1967, p . 21); Sn- 1 is a two-fold covering space of P" -1 . For all
k,n > 2 with n > k, 7r,(Gk,") = Z2 (see Steenrod, 1951, 25.8, p . 134) . Therefore
Gk,n is not contractible when n > 2 and n > k. Furthermore, when 1 < i < k

7Ti(Mk,") -7ri-1(Or,-k)

where O"- k is the real orthogonal group of transformations in Euclidean space :
we have that 7Tj(O"_k+l)= 7r;(R"-k+l) for i >_ 1, where Rk is the rotation group
of Ok which is generally not contractible (see, for example, Steenrod, 1951, p . 35,
7.9, p. 134, 25.8, and p. 131, lines 11-12) . Therefore in general fl is not
contractible .
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Appendix

A.I . The manifold structure of Gk,"

We describe briefly the manifold structure of Gk . " : this notation is used in the
proof of Theorem 2. A manifold structure for Gk.n is defined (see Singer and
Thorpe, 1967) by a finite set of coordinate charts (WQ) covering Gk°", and
corresponding coordinate maps cp, : W,, -+ Rk("-k), which are diffeomorphisms,
where Q E E = (a : Q is a permutation of (1, . . . , n)) . Gk.n is compact . In each
chart (WQ) we normalize the vectors to obtain a unique representation of each
space, of the form L = [I I KIP,, where K is an (n - k) X k matrix orthogonal to
the space L, I is the (n - k) X (n - k) identity matrix, and PQ is an n X n
permutation matrix corresponding to Q.

A.2 . Proofthat regular economies satisfy condition (iv)

The following two lemmas prove Proposition 2 in Section 2 in the text namely,
that a regular economy satisfies condition (iv) as defined in Section 2. This result
is established in two steps . The first step is a preparatory result. Let S = f(p, L) E
4 X Gk,n : Z(p, L) = 0} .

Lemma 3. Assume that the economy E is regular Definition 3 in Subsection 3.3).
Then each connected component T of S is a covering space of Gk'", andfor all
j > 1, 7rj(T) = rrj(Gk'") .

Proof. By Proposition 1, the projection map r'2 : S -3, Gk,", defined as n 2(p, L)
= L, covers its image . Furthermore, since the economy is regular, the Jacobian JZ
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of the excess demand Z with respect to the variable p contains an (r - 1) X (r - 1)
sub-matrix with non-zero determinant t1(p, L) E S. Therefore, by the implicit
function theorem and the hypothesis on JZ (regular economies), for each L in
Gk," there exists an open neighborhood NL of the point L and disjoint open
neighborhoods {Uq} in S, such that the restriction of the map Z on each U~ is a
homeomorphism Z/ va : U,, --> NL . Since II 2 covers Gk . ", this implies, by defini-
tion, that II 2 : T ---> Gk." defines a covering space for each connected component T
of S . In particular, for all j > 1, r1j(T) = rl 1(Gk,") (see, for example, Croom,
1978, theorem 6.9, p. 116) .

Lemma 4. Under assumptions (i)-(iii) ofSection 2, a regular economy E satisfies
condition (iv) of Section 2.

Proof. Let E be a regular economy. By Lemma 3 each connected component T of
the manifold S is a covering space of Gk," . Under assumptions (i)-(iii), for each
fixed L there are an odd number of equilibrium price vectors p such that
Z(p, L) = 0: this is a standard result which follows from the boundary behavior of
the excess demand assumption (iii) . We first consider the case k > 1 and n > 2.
As shown in the examples of pseudo-equilibrium manifolds following Theorem 2
of Section 4, for all k > 1 and n > 2 the space G k," has only two connected
covering spaces : one is Gk°" and the other is M k. ", the oriented k-fields of R", a
one-fold and a two-fold covering, respectively . If all components of S had an even
number of folds, then the number of equilibria for each L would be even;
therefore there must exist at least one connected component T of S such that the
covering T -> Gk," has an odd number of folds . This in turn implies that there
must exist a connected component of S which is diffeomorphic to G k '" ; obviously
such a component defines a continuous selection from Gk," to an equilibrium price
as required by condition (iv) .

Finally consider the case k= 1 and n = 2. Then G i .2 is the circle ; since S is a
1-manifold without a boundary, each component is either the line R or the circle
St . Therefore some component of S must be S', for otherwise there would be an
infinite number of equilibria, contradicting Debreu (1982); obviously such a
component defines a continuous selection . Therefore (iv) is satisfied .

	

13

A.3 . A robust example of regular economies which satisfy condition (iv)

Consider an economy with two periods, n states, m goods in each state, J
traders, k assets, k < n, and let r = m X (n + 1) . We assume that all traders have
the following identical utility function : 's

n
u(xo , x l , . . . xr ) = u(xo ) + P~7Tiu(Xi ),

t= t

is We are grateful to Yuqing Zhoo for this example.
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m

u(Xi) = Lral 109 Xli, x i = (Xli, . . ., Xli, . . ., Xmi)

m
0<P< 1, 0 < cx l < 1, E°tl= 1 and ElTi = 1 .

1=1

	

i=1

We further assume that the first trader has the following initial endowments :

w l =(a, a, . . .,a)=ae,

	

e=(1, 1, . . .,1) ER++ ;
a E R+ + is some real number which will be chosen later. Also we assume that the
other traders have the following identical endowments :

w g =(b, b, . . .,b)=beCHR++, b> l ;

b will be chosen later .
From the specifications of the utility functions it is easy to check that the

individual demand functions are

zl (P , wl) = az' (P , e),

z g (p, L, wg) = bz g ( P, L, e) = bz(p, L, e),

where

Z'( p, w~) =

	

arg

	

max u(x),
xEB(p,w,)

B(p, w l ) = {x E R' : p(x- wi) = 0),
and where

zg(p, L, w g ) =

	

arg

	

max u( x)

Thus

xE B(p,L,w g )

B(p,L,(o g )={xER" :p(X-w g)=0and pp(x-w g )EL} .

Z( p, L) = az' ( p, e) + (J - 1) bz( p, L, e) .

Now we prove that for each L E Gk," there exists a unique p E R++1 (we assume
that pmn = 1) such that Z( p, L) = 0. Direct computation shows that the price
vector

a l

	

_

	

a l 7r i

Pli =
CY m7Tn

n

satisfies Z( p, L) = 0 for all L, a and b. Thus the no trade allocation is optimal
for each agent and is supported by this price vector. It follows that the equilibrium
price is unique.
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Let Z(p) be the first (n - 1) coordinates of Z(p, L). F and p are interpreted
similarly . We can readily verify that the form of the utility functions implies that
the Jacobian of the first agent's demand function, Dz'(p, e)/Dp, has a non-zero
determinant. We can also compute Dz(p, L, e)/Dp: this is independent of b. It
then follows that
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