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Chaotic behavior of prices can emerge as a robust result from a very simple and
standard price adjustment process . Consider the dynamics of prices adjusting according to
supply and demand in economies with increasing returns to scale . Increasing returns in
production implies the existence of a globally attracting set of prices, containing a stable
disequilibrium price, within which the motion of the system is chaotic. This property holds
for any step size in the price adjustment process when consumption and leisure are
complementary . We prove that long-run statistical properties of the system's behavior in
this set are described by an ergodic measure . Price dynamics drive the system into the
globally attracting region, and then chaotic motion takes over. On average according to this
measure there is excess supply . We suggest possible empirical implications of our analysis,
particularly with respect to the relationship between wages changes and the demand for
labor, the "Phillips curve" .

JEL classification: C62 ; D50 ; E24
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1 . Introduction

Chaotic behavior of prices can emerge as a robust result from a very simple and
standard price adjustment process . Consider the dynamics of price adjustment in
economies with increasing returns to scale, with the dynamics given by the usual
adjustment according to the laws of supply and demand . Heal (1982, 1991) and
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Fig. 1 . A production function with a fixed cost F followed by diminishing returns, and the labor
demand curve to which it gives rise . This does not intersect the supply curve, so that there is no market
clearing price. P * is a "stable disequilibrium price" .

Chichilnisky and Heal (1987) show that such economies may have a "stable
disequilibrium price", i.e ., a price vector that is locally stable although not a
market clearing price. The stable disequilibrium price, is a price vector at which
the excess demand function of the economy is discontinuous . It is in fact the price
vector that would clear markets and give a competitive equilibrium in the convex
economy defined by replacing non-convex production sets by their convex hulls .
This is illustrated in Fig. 1, in which p

* is the stable disequilibrium price. Fig. 1
shows, on the left, a non-convex production possibility set and the price vector p *
at which the firm's input demand is discontinuous, and on the right the resulting
discontinuous input demand function and a continuous supply function . For
p > p * there is excess supply, and vice versa. At p * excess demand takes two
values, neither of which is zero . Clearly if price falls when supply exceeds demand
and vice versa, then it will tend to p * . This is not however a market clearing
price: there is in fact no such price (for a more detailed discussion, see Heal
(1981))' .

In the Section 2 we set out the model used in the paper. Section 3 contains the
main theoretical result. These are:

I The previous analysis showed that whenever the price vector is away from the "stable disequilib-
rium", it moves to reduce the distance from that point . Behavior at the stable disequilibrium was not
analyzed : the behavior of the system is not defined at there. A natural intuition is that at that point, and
in a neighborhood of it, there is behavior that is "unusual" . The system reaches the point p * with
positive velocity from either side, so that it is natural to think of it overshooting . In the present paper
we address these issues : we analyze the dynamics of a discrete Walrasian system, focusing particularly
on behavior in a neighborhood of the stable disequilibrium, and establish that it is either strongly
chaotic or cyclical . The intuition that prices overshoot p * and behave irregularly in that neighborhood
is justified . We show that on average over time the price exceeds p *, so that on average there is excess
supply in the economy.



1. Theorem 1 : the existence of a globally attracting set of prices, containing the
stable disequilibrium price, within which the motion of the system is chaotic.
Long-run statistical properties of the system's behavior in this set are described
by an ergodic measure. Walrasian price dynamics drive the system into this
region, and then chaotic motion takes over . This result is true for any
specification of the economy where the adjustment has step size greater than a
specified minimum. In addition, for an open class of preferences and technolo-
gies showing complementarity between consumption and leisure, this is also
true for any step size in the adjustment process . The average price according to
the ergodic measure, is one at which supply exceeds demand, so that on
average there is excess supply .

2. Theorem 2 : when substitution in consumption is extensive, then the price
dynamics converge to . a period-two cycle, with the stable disequilibrium price
located between the two limiting points .
Section 4 suggests an application of the earlier results to an interpretation of the

Phillips curve relationship between unemployment and wage changes. We argue
that if there are increasing returns in the employment of labor, then the labor
market may share some of the characteristics of our model, namely the absence of
a market clearing wage, and chaotic behavior of wages within a certain range. This
could generate time series on wage changes and unemployment with the character-
istics of the Phillips curve. The policy implications of such a relationship within
our framework would be very different from those normally attributed to the
Phillips relationship .

Although chaotic behavior of a price-adjustment process has been noted before,
the case studied here is particularly robust, both in the sense of being characterized
by an ergodic measure, and also in the sense of holding for all step sizes in the
adjustment process and for an open set of parameter values . To the best of our
knowledge, this is also the first time that it has been possible to characterize the
sign of the average excess demand as prices switch between regimes of excess
supply and excess demand: on average the chaotic behavior in our model
corresponds to excess supply 2 .

2. The economy
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In this section we set out the model used in the paper. There is a single input,
labor, and a single output, a consumption good. These are produced and consumed

z Another distinctive technical feature of our analysis, is that the state transition function is a
discontinuous map. The technical argument builds in part on recent results due to Keener (1980) on
chaotic behavior in piecewise continuous difference equations. The methodology of "chaotic systems"
in economics is clearly reviewed in Day and Pianigiani (1991) . For an analysis of the methodological
and conceptual issues associated with this type of system, the reader is referred to Baumol and
Benhabib (1989).
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respectively by a single firm and consumer . The firm's technology is given by the
production possibility set:

_ ~

	

0

	

if L<F< 1

A(L - F) "

	

otherwise

	

(1)

where 0 < a < 1 . There is a fixed cost introduced by a minimum input require-
ment of F : once this is met, output shows diminishing returns . F is assumed to be
less than 1, which is the total labor supply .

It is easy to show that this production function will give rise to the conventional
U-shaped average cost curve so widely assumed in microeconomics text books:
average costs fall initially as the fixed cost is spread over an increasing output, but
then increase as diminishing returns bite . It is not difficult to justify the concept of
fixed cost : clearly there are large setup costs in many industries requiring either
initial R&D or substantial initial investments in plant and equipment . In the
present model the fixed cost is in terms of labor. One interpretation is to think of
the fixed labor costs as a metaphor for more general fixed costs: we are keeping
the dimensionality down to two (one input, one output) to make the dynamical
system tractable . Another interpretation is to think of the administrative, account-
ing, organizational and sales staff required to run a corporation, all of whom
constitute a fixed labor requirement which is independent of the level of output, at
least for a range of output levels . An alternative (and rather ingenious 3 ) illustra-
tion of a fixed minimum labor requirement is a "bucket chain" passing water
from a lake to a fire : until there are enough people to form the chain, no water will
be passed .

The price of the output is normalized to be one, and W is the wage rate . Hence
profits 7r are given by

7r=A(L-F)_-WL, L>>-F .

	

(2)

The first order conditions for profit maximization define the demand for labor,
(see equation 3), which is discontinuous, as shown in Fig. 1 .

i

Due to a referee .

0 otherwise
The wage rate at which the demand for labor is discontinuous is found by
substituting the labor demand function for W< W * into (2) and equating profit 7r
to zero, which gives

(1
- a) (t-a)

W * =Aa«

	

F

	

(4)



Labor demand at W *

	

equals

	

F/1 -a, which is independent of the scale
parameter A .

Preferences are given by the CES utility function :

u(Y,L)=[Y9+(I-L)a] P, (3E(-c°,I)

where maximum labor supply is scaled to be one and Y is the worker's
consumption level. The consumer maximizes utility, which gives the labor supply
function

If /3 is a large negative number, so that consumption and leisure are consumed in
approximately fixed proportions 4 , the labor supply curve is backward-bending :
for (3 near unity, giving a high level of substitutability between consumption and
labor, the supply curve has a positive slope. Hence the excess demand function for
labor is

Z(W) =
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3. Dynamic behavior

Wt, a = O(W, ;A,a,P) .

I + WR-t

if W<W*

if W > W *

In this section we establish the main results. Proposition 1 confirms the
existence in our model of a stable disequilibrium price, while Theorems I and 2
establish respectively the conditions for chaotic and cyclical behavior .

Price dynamics are governed by the following equation :

W,+ t = f1 , + AZ(W,),

	

(7)
where A > 0 is given. Price adjusts proportional to the excess demand of the
current period . For convenience, define the map:

4 Consumption and leisure are consumed in approximately faxed proportions in any recreational
activity which requires consumer goods as an input.
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Proposition 1. For all fixed costs greater than a minimum F* = F * (A, a, /3) <_ 1
- a, there is a stable disequilibrium price and no Walrasian equilibrium exists .

Proof. From equation (3) we know that labor the demand curve has two
segments . The segment for W< W * has as its boundary L* (W * ) = F/ 1 - a
and shifts to the right as F increases (from (3)) : W * decreases as F increases
(from (4)) . Choose F* to be the largest F such that the labor demand curve for
W< W *

	

and the labor supply curve intersect . Since labor supply is bounded
above by l, we have F* < 1 - a . It is therefore clear that the labor demand curve
for W< W *

	

will not cross the supply curve if F >- F * . For W >_ W *, labor
demand is constant and equal to zero . Labor supply converges to zero only if W
goes to infinity and /3 < 0.

The assumption F * < F < 1 - a will be maintained throughout our discus-
sion . For F < F *, there always exists a stable Walrasian equilibrium. The
dynamic adjustment processes for that case will not be discussed here . If F> 1 -
a, then the labor demand is either equal to zero or greater than the maximum labor
supply .
We split our discussion into two parts. In the first part (Theorem 1), we look at

the case where preferences display complementarity between leisure and consump-
tion (/3 < 0) and find that price dynamics demonstrate chaotic behavior which
persists for all step sizes, and in particular as h decreases to zero . In the second
part (Theorem 2), we look at the case where consumption and leisure are
substitutes (0 < /3 < 1) . Chaotic behavior may also be found: however, it disap-
pears as Jt becomes smaller than some critical value A * , and is replaced by
periodic behavior . Since chaotic behavior would not occur for small 1l without
fixed costs (i .e ., with F = 0, in which case we have a convex economy: see the
arguments in Day and Pianigiani (1991), section 2), we may conclude that the
fixed cost is responsible for the chaotic behavior in the first case ( '6<_ 0) .
We now establish the main result of the paper, Theorem 1, which shows that

for preferences displaying complementarity between leisure and consumption, the
discrete Walrasian adjustment process (7) leads to chaotic behavior with an
associated ergodic measure for any value of the adjustment parameter A. Theorem
2 deals with the case of substitutability between consumption and leisure, and
establishes the existence of a limit cycle. From now on, we assume that the fixed
cost F is sufficient to ensure the existence of a stable disequilibrium price, i.e .,
F * < F, and in addition that F < 1 - a, so that the fixed cost is bounded below
the total labor supply by an amount depending on the nature of returns to scale
after the fixed cost is met.

Theorem 1. Consider any adjustment size .t and a E (0,1). Assume that
consumption and leisure are complements so that the labor supply curve is
backward sloping, i.e., l3 < 0. Then for a sufficiently close to one, i.e., the
production function close to linear after the fixed cost is met:



(i) There exists upperand lower "trapping values" of the real wage W _W and
Wand a time T > 0, such that for any initial value of the real wage WO and all
times t > T, the real wage is in the "trapping set", i.e ., W, E [ W W].

(ii) Within the interval [WW] the behavior of (7) is chaotic in the sense that
there exists a unique invariant measure lr, on [W, W] that is absolutely continuous
with respect to the Lebesgue measure with the following property: for almost any
initial conditions and any measurable subset S of [W W], g(S) is the average
fraction of the total number of periods that a trajectory spends in S.

Proof. A crucial step is to establish that W, + , = 9(W,) or W, +i = 0'(W,), for
some integer i, is an expansive map (Day and Pianigiani (1991) p. 45, Theorem
3) . A map is expansive if the absolute value of its derivative is bounded above
unity, Lebesgue almost everywhere . Since the proof for [3 = 0 is slightly different
from that of [3 E (-°°,0), we look at the two cases separately.

Case 1 . (--,0) . (see Fig. 2a)
We show that (8) is an expansive map. For W>- W * ,

(1+W

In this case, dW, + ,/dW, is clearly greater than 1 .
For W< W',

dW+ I

dW,
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1

	

2- ce

- 1 +A

	

a-I(W)~-I

a 1 I

	

CYA

With some manipulation we get
dW,+I
dW,

- 1-a(Lo(W)-F)I.

We need to show that the right-hand side is less than -1 or to show

W L6

[~
1 Ls(W) - RR 1 [Ls(W)]2- 1 1

a(Lo(W)-F)J

(10)
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w(t+l)

A sufficient condition would be

w(t)

A

Fig. 2. (a) Transition map in the case when /3 is negative . (b) Transition map in the case when /3 is
zero .

F

	

a

	

1

	

/3

	

2A
> - .

	

(11)
1-a 1-a

	

4 /3-1
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We used several inequalities

W <A, Ls(W) -(Ls(W))2<a, LD(W)-F>

	

a

	

F,
1-a

which can be derived easily. Inequality (11) will always hold if a is sufficiently
close to unity, i.e ., returns to scale are close to constant once the fixed costs are
met. An application of Day and Pianigiani's theorem 3 now proves the theorem for
/3 E (-00,0).

Case 2. (3 = 0. (see Fig. 2b) In this case, labor supply equals 1/2 for all W and
dWt + I /dW, = 1 for W >- W * . Theorem 3 of Day and Pianigiani does not apply .
Instead, Corollaries 2 and 3 to their theorem 4 (Day and Pianigiani (1991), p. 47)
will be used . Basically, we need to find an integer i, such that the map
Wr+ i = Bi(Wr ;A,a, 8) is expansive .

Define W= W * - 0.5 A, and W=_W+ AZ(W). These two values form the
interval [WW] of point (i) of the Theorem. Notice for any W, located in the range
[W *N], the price adjustment will follow Wt+ 1 = W, - 0.5A, and after some finite
number of periods, it will drop to the range [W W * ]. It is easy to see that for all
initial prices located in [W *,W], W is the initial value from which the system will
take the longest number of periods, say k, to reach a point lower than W * .
Consider the map

Wr+k - B k (Wr)

	

( 12)
Differentiate with respect to W, and by the chain rule, we have

dWr+k dWr+k dW, +k-I dWt+I (13)
dW,

	

-
dW,+k-i dW,+k-2 ~ . . dW`

For any initial WJ E [WW], and its generated sequence {W,, W, + I , . . ., Wr + k), there
exists at least one W, +i which belongs to [WW *], where the derivative is less
than -1 under our assumptions. So at least one of the terms on the right-hand side
of equation (11) is less than -1, all the other terms are either one, if WE[W *,4V],
or less than -1, if WE[WW * ]. Their product in absolute value must be greater
than 1 . So the map Wr + k = 9 k(W') is expansive. Theorem 1 now follows from
corollaries 2 and 3 of Day and Pianigiani, p. 47 . This completes the proof of
Theorem 1 .

Finally we characterize the behavior of equation (7) describing the price
dynamics for the case when 0 <,G < 1, i.e ., consumption and leisure are substi-
tutes . Recall that Theorem 1 addressed the case of ,0 < 0, and established that for
any adjustment parameter A chaotic behavior is possible . With 0 < '6 < 1 chaotic
behavior is still possible, but only for A in excess of a lower bound. In this case,
for small enough values of the adjustment parameters A, the system has a
two-period orbit which is both structurally and dynamically stable . Formally,
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Theorem 2. If consumption and leisure are substitutes and the supply curve for
labor slopes forward, i.e., /3 E (0, 1), then there exists a critical adjustment
parameter A * _ A * (A, a, /3), such that for adjustment parameters less than this,
i. e., 0 < A < A *, there is a unique, globally attracting period-two solution [W,,W2 1
to the price adjustment process Wt +, = O(W,,A,a,8) such that W, < W * < W2,
where W * is the stable disequilibrium price. Furthermore, there is a period two
solution for an open set ofparameter values.

Proof. This theorem follows from discussions in section 3 of Keener (1980).
We need, however, to reformulate our problem so that his results can be used .

As in the case for /3 :!5; 0, we can define a trapping region [_WW]. _W will depend
on A. Let A, be the biggest value, such that _W > 0 for all A < At . Now look at
equation (7) and (8). For a E (0,1) and (3 E (0,1), and for both equations, the
derivative dWr+ ,/dW, is uniformly bounded above by one. Since the derivative
decreases monotonically with A for each case, there exists a maximum A * which
is less than or equal to At , such that for A < A*, the right-hand sides of equation
(7) and equation (8) are both uniformly bounded below by zero for their
corresponding domains of W. The following lemma follows from the definitions
of F * and A* .

Lemma 1. For any structural parameters A, a and /3, there exists F* and A* ,
such that if F > F * and 0 < A < A* , then
1 . O(WA, a,,6) maps from [_WW1 to itself.
2 . 0<dW,+,/dW<< ./for WE[_WW*) and WE(W*,W1,
3 . O(W)>W* andO(-W)<W* .

Here (3) is a direct result of (2).

Lemma 2. Suppose (3) of lemma 1 is true, then O(W) has aperiod-two solution
(Keener, Lemma 3.2) .

Lemma 3. With the assumption of lemma 1, the period-two solution in the
above lemma is unique, globally attracting and structurally stable 5. (This is a
combination of Keener's lemma 3.1, corollaries 3.16 and 3.17) .

The above discussion together with lemmas 1-3 proves Theorem 2.

The following immediate corollary describes a basic property of a time series of
excess demand for labor and changes in the real wage . It observes that if we plot
these against each other, they will lie in the second and fourth quadrants and
demonstrate a persistent negative correlation.

5 In the sense of holding on an open set of parameter values .
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Fig. 3. An illustration of Corollary 2.

Corollary 1. Let 4W, Z(W,), t=l_.,oo be a sequence of wage change and
excess demand pairs on a trajectory of the price adjustment process (7). Then
sign(AW,) = signZ(W,) for all t. Furthermore, the sequence ( IAW, I ) remains
bounded away from zero.

Proof. The proof of this result is immediate from Theorem 1 .

The following result characterizes the average or long-run relationship between
supply and demand during the chaotic behavior of the system. It shows that on
average over time there is an excess supply of labor, because on average the wage
exceeds the stable disequilibrium wage .

Corollary 2. The long-run average wage is always greater than the stable
disequilibrium price, W * , under the conditions of Theorem 1.

Proof. Denote [WW * ] region L and [W *,_W_1 region H (see Fig. 3) . Consider
first region L. Z°(W) is less than -1 for a close to unity. So for any WS E L,
VY', I >_ W * + Z(W * ), which implies that W would not spend more than one
period in region L.
Now suppose W, E H in period t. Since excess demand is negative, Wr+ 1 will

be lower than W, and after some finite number of periods, say k, it must drop
down to region L. Price adjustment thus displays a cyclical pattern. During each
cycle, the price will stay in region L only once and in region H at least once . If
we can show the average price for each cycle is greater than W *, then this must
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also be true on average over time. Consider one typical cycle. It can be shown that
in any period when the price drops to the L region, then in the next period it gains
even more (this is suggested by Figs . (2a) and (2b)). Therefore the long-run
average price will be higher than W * .

Under our parameter specifications, we would observe periodical fluctuations
of the real wage (and therefore of unemployment). In the very long run, the
average value of W along any time series of values of W is above W * . Hence
there will on average be an excess supply of labor, i.e ., unemployment. This
completes the proof of Corollary 2.

It is of course still possible to prove an analog of Corollary 1 of Theorem 1 in
the case of substitution between leisure and consumption analyzed in the Theorem
2. An analog to Corollary 2, stating that on average there will be excess supply,
can also be derived with some specific assumptions on the structural parameters .

4. Persistent disequilibrium and the Phillips curve

Theorem 1 and Corollary 1 are suggestive of a novel interpretation of the
statistical relationships that have often been noted between wage changes and
unemployment. Consider a plot of wage changes against the associated levels of
unemployment (the negative of excess demand). Theorem 1 implies that wage
changes and unemployment always have the opposite sign, so that there is a
negative association between wage changes (inflation) and unemployment . Fur-
thermore, this relationship is persistent in the sense that wage changes do not go to
zero over time : this is Corollary 1 .

The economic implications are that within the attracting set of prices, there is
always either excess supply or excess demand, which is accompanied by price
changes . If we take the input to be labor and the price to be the real wage, then the
price dynamics generate a time series of real wage changes and levels of
unemployment: this time series will have the statistical properties of a Phillips
curve (Phillips, 1958, Sargan, 1980). Theorem 1 implies that wage changes and
unemployment always have the opposite sign, so that there is a negative associa-
tion between wage changes (inflation) and unemployment . Furthermore, this
relationship is persistent in the sense that wage changes do not go to zero over
time . For a price adjustment process which converges to an equilibrium, the
relationship would not persist indefinitely, but would be a transient or disequilib-
rium phenomenon : here it is a long-run equilibrium relationship .

In this framework, it is clear that a persistent negative relationship between
wage changes and unemployment does not represent a locus of alternative
equilibrium configurations . These are not alternative configurations between which
a policy-maker can choose . They represent rather a stable limiting distribution of
excess demand-price change pairs according to the ergodic measure of Theorem 1 .
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The "Phillips curve" relationship therefore has no policy implication about a
trade-off between inflation and unemployment in this context: it is a by-product of
price dynamics in a non-convex economy. We are able to predict from the
parameters of the model whether there will be on average excess demand or
excess supply in the very long run, as the system evolves within the attracting set
and displays "Phillips curve-like" behavior . In a statistical sense, the economy
will display chronic excess demand for or supply of labor, depending on the nature
of technologies and preferences.
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