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Following Chichilnisky and Chichilnisky-Kalman we establish existence and
optimality of competitive equilibrium when commodity spaces are infinite dimen-
sional Sobolev spaces, including Hilbert spaces such as weighted LZ which have L .
as dense subspaces. We allow general consumption sets with or without lower
bounds, thus including securities markets with infinitely many assets and unbounded
short sales, and economies with production . We give non-arbitrage conditions on
endowments and preferences which suffice for the existence of an equilibrium. Prices
are in the same space as commodities . Equilibrium allocations are approximated by
allocations in other frequently used spaces such as C(R) and L,. . © 1993 Academic
Press, Inc.

This paper establishes the existence and Pareto efficiency of competitive
equilibrium in Arrow-Debreu exchange economies with infinitely many
commodities and a finite number of consumers. It has two distinctive
features . One concerns the assumptions on consumption sets : these are
general convex sets which may include the whole space or be bounded
below.' This feature allows us to prove existence of an equilibrium in
markets without bounds on short sales, in both finite and infinite dimen-

* The first version of this paper was presented at a Cowles Foundation seminar in the Fall
of 1983, and was circulated as Working Paper No . 79 of the Institute of Mathematics and its
Applications of the University of Minnesota, June 1984, Chichilnisky and Heal [12] . The
authors are respectively at the Economics Department and the Graduate School of Business
of Columbia University. We acknowledge research support from the NSF, the Rockefeller
Foundation, the Institute for Mathematics and its Applications at the University of
Minnesota, and the Stanford Institute for Theoretical Economics. We thank the editor, an
associate editor, a referee, and D. Brown, R. Bergstrom, T. Bewley, H. Cheng, M. Florenzano,
A. Mas-Colell, J. F. Mertens, M. Magill, L. McKenzie, J. Ostroy, M. Quinzii, W. Thomson,
N. Yanellis, and A. Zaman for helpful comments .

' The requirements on our consumption sets K are: K is closed and convex, and
y _> xEK~yE K. This includes inter alia, the positive orthant, the whole space, and sets
which are bounded below in some coordinates and not in others .
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sional cases. The ability to deal with the whole space as a consumption set
is important where agents trade in contingent commodities, e.g., financial
assets, and can naturally take unbounded short positions . Green [21 ],
Hammond [22], Hart [24], and Werner [31] have all analysed equi-
librium in particular finite dimensional economies where short sales are
permitted, but their results do not apply to infinite dimensional cases, nor
do they have the full generality required for Arrow-Debreu models.' We
allow for consumption sets which are bounded or unbounded below, and
mixed cases where some coordinates are bounded below and others not,
thus covering a wide range of models of markets used in economics as well
as in finance, and permitting an extension to economies with production .
We handle unbounded consumption sets by introducing non-arbitrage
assumptions on individual preferences (Condition (C)), and proving on the
basis of these assumptions the norm-boundedness of the feasible allocations
preferred by all agents to a given allocation . The interpretation of the
results in securities markets with infinitely many assets is that non-
arbitrage conditions suffice for the existence of a competitive equilibrium
(Theorem 1). Related conditions, called limited arbitrage, have been shown
to be necessary as well as sufficient for the existence of a competitive
equilibrum in Euclidean and infinite dimensional commodity spaces,
Chichilnisky E15, 16] and Chichilnisky and Heal E17] .
The second distinctive feature is that commodities spaces are Soboleu

spaces' H S. These are Hilbert spaces of functions which include (weighted)
L2 , and therefore have inner products and a countable orthonormal basis
of coordinates. These are valuable features in the computation of solutions
and in the study of dynamic models [8-10] : Sobolev spaces also provide
a standard analytical framework for dynamics in physics (Adams Ell).
Sobolev spaces have a further advantage : they can be made to consist
exclusively of continuous and smooth functions, depending on the choice of
the parameters, as shown in the Appendix.' Sobolev spaces therefore allow
the use of differential topology for the study of infinite dimensional
problems (see Chichilnisky [7], Nirenberg [29]), thus providing in infinite
dimensional cases the foundations for investigating properties of regular
economies such as the number and stability of equilibria . In all cases, the

Z Green, Hammond, Hart, and Werner deal with particular models ; they typically consider
two periods and incomplete markets.

' A definition of the Sobolev space H', where the integer .s >_ 1, is given in the Appendix.
° For example H'= C(R), the space of continuous real valued functions on R, HZ c C'(R),

the space of continuously differentiable real valued functions on R, and HO =LZ (see the
Appendix). Note that, as pointed out in [27] C'([0, 1]) is not a Banach lattice, so results
which require commodity spaces to be Banach lattices [27] cannot establish the existence of
an equilibrium in C' spaces. However, since the Sobolev space Hz consists of C' functions
(see Appendix), our approach etablishes the existence of an equilibrium in spaces with com-
modities bundles in C' .

642/59/2-9
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duality properties of Sobolev spaces are good: prices, which are continuous
linear functions on commodity spaces, are in the same space as com-
modities, thus avoiding the duality problems found in Lx . The results
presented here apply also to other LP spaces, 1 <p < oe : this is shown in
the Appendix . In the text we concentrate on the (weighted) Hilbert spaces
LZ . Hilbert spaces are the closest analog to Euclidean spaces in infinite
dimensions, as they have a basis of coordinates and are self-dual. These
spaces contain as dense subspaces other spaces which have been frequently
used in economics, such as L, (footnote 5) by Debreu [18] and subsequently
inter alia Bewley [3] and Florenzano [20]. Hilbert spaces have been found
attractive in non-parametric econometrics (Bergstrom [2]) and in the
study of arbitrage in financial markets (Harrison and Kreps [23] and
Chamberlin and Rothschild [6]) . However, all Hilbert, indeed all the LP
spaces with p < cc, present a well-known technical difficulty : the interior of
the positive orthant is empty. This means that standard separation
arguments used for finding equilibrium prices, such as the Hahn-Banach
theorem, cannot be applied to sets contained in the positive orthant. This
problem was solved several years ago in optimal growth models where
Hilbert spaces were first introduced in the economics literature ;
Chichilnisky [8-10] and Chichilnisky and Kalman [12] . There are two
main tools for dealing with this problem : one is to work with utility func-
tions which are continuous in the norm of the space. This was done in
Chichilnisky [8-10], where a complete characterization of such continuous
functions was also provided (see the Appendix) . The other tool is a "cone
condition," which was introduced in Chichilnisky and Kalman E12,
Theorem 2.1 ] as necessary and sufficient for the existence of supporting
hyperplanes for convex sets which may have empty interiors . This condition
was later adopted in Mas-Colell [27] and renamed "properness" (see
Chichilnisky E14]). In addition to these tools, when consumption sets are
unbounded below, we need here a Condition (C) on preferences. Condi-
tion (C) is used to prove that the feasible allocations exceeding given utility
values for each agent form a bounded set even when the consumption set
is all of H'. Together with the continuity assumption in H` this implies that
the Pareto frontier is closed . Adding a regularity condition on supporting
prices, we establish the existence and Pareto optimality of a competitive
equilibrium in Theorems 1 and 2. The proofs in the text are for weighted
LZ . The Appendix extends the results to weighted Lp (1 <_ p < or-,) and to
other Sobolev spaces of continuous and differentiable functions .

5A weighted L, space consists of measurable functions on R which are square integrable
with respect to a finite measure p on R, i.e., f p(t) < oo . L, , the space of uniformly bounded
measurable functions on R, is contained in a weighted LZ space as a dense subspace . Any ele-
ment fof a weighted L, space is the limit in the 11 '11 2 norm of a sequence of functions in L x,,
(f'"), n= l, . . ., where f"(.x)=f(x) for j .x) <n, and .J"(x)=0 otherwise.
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The results presented here extend those in the literature in several direc-
tions . Our conditions for existence and optimality are given solely on
individual preferences and endowments, as in the original proofs of Arrow
and Debreu, rather than on derivative concepts such as demand. Most
existence results consider only consumption sets which are positive
orthants (Mas-Colell [27] ), or more general sets (in Rx ) 6 but still
bounded below (Boyd and McKenzie [4] ) ; they exclude models frequently
used in financial markets where consumption sets are unbounded below.
Our consumption sets include a wider class of convex sets which contain
the positive orthant, and which may be bounded below or not, or may
even be bounded in some coordinates and not in others (see Sects. 5 and 6)
and therefore include standard Arrow-Debreu models of markets with real
commodities as well as models of financial markets. Moreover, for the
special case of positive orthants our results are still more general.' For
example, our conditions on preferences (continuity in Hs and regularity
(R)) are strictly weaker than the conditions of [27] (see footnotes 4, 7, 10,

and 13); [27] assumes an exogenous "closedness condition" on the Pareto
frontier while we, instead, prove that the Pareto frontier is closed from our
assumptions on preferences (see Lemma 5 and 7 and footnote 13); our
results apply to consumption bundles in C' while those of [27] do not
because C is not a Banach lattice (see footnotes 4 and 7) .

6 R- is the space of all sequences of real numbers.
In Hilbert and L,, spaces, our existence results are more general than other existence

theorems even in the case where consumption sets are positive orthants . Consider, e.g ., Mas-
Colell [27] . Our conditions are strictly weaker than those of [27] because we do not assume
that the Pareto frontier is closed as in [27, "Closedness Hypothesis," p. 1046] . This condition
is generally false in L_ as pointed out in [27], where it is postulated without reference to
the primitives of the model (preferences and endowments). Our Lemmas 3, 5, 6, and 7 establish
this property for the Pareto frontier and the existence of prices supporting Pareto efficient
allocations from our assumptions on preferences ; see footnote 13 . Furthermore, the "uniform
properness" condition of [27] is strictly stronger than our requirements on preferences (con-
tinuity) ; see footnotes 10 and 13 . A "cone condition" identical to the "properness" condition
of [27] was initially introduced in Chichilnisky and Kalman [12, Theorem 2.1, p. 25, (a)]
and proven to be necessary and sufficient for the existence of a supporting hyperplane for
convex sets which may have empty interior ; Chichilnisky [14] . The results of [27] do not
apply to spaces of C' functions because these are not Banach lattices ; however, our H2 spaces
consist of C' functions (Appendix) so our results prove existence of C' equilibrium alloca-
tions. As this paper goes to press, Brown and Werner [5] circulated a new paper dealing with
unbounded consumption sets which rules out the positive orthant in many spaces, while
implying the "cone condition" (their condition A2). Therefore their results do not apply to
Arrow-Debreu models in L,� 1 _<p < _c, but rather to models used in the finance literature .
Brown and Wener [5] also require the "closedness condition" on the Pareto frontier while we
do not.
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2 . DEFINITIONS

Commodities are indexed by the real numbers. Consumption bundles are
therefore real valued functions' on R. The space H of commodity bundles
is a weighted LZ space of measurable functions x(t) with the inner product
<x, y > = f R x(t) - y(t)dy(t), where u(t) is any finite and positive measure on
R (fR dp(t) < oo, p(A) > 0) for all measurables in set A, which is absolutely
continuous with respect to the Lebesgue measure. The LZ norm of a func-
tion' x is 1XII = <x, x> l ~ 2 . A price p is a real valued function on H giving
positive value to positive consumption bundles : this implies that p is
continuous on H, that p is itself a function in H, and that the value of the
bundle x at price p is given by the inner product < p, x> = f p(t) - x(t) dp(t).
The price space is therefore H+, the positive cone of H. All results given
here apply to the space of real sequences IZ with a finite measure; the
appendix extends the definitions and the results to other LP and to Sobolev
spaces H', for an integer s > 1.
The order > in H is given by x >y iff x(t) >y(t) a.e ., and x >y iff x > y

and x(t) > y(t) on a set of positive measure and x > y iff x(t) >y(t) a.e.
A function W: H -> R is continuous when it is continuous with respect to
the norm of H. For all x E H, define the set WX = { y E H : W(y) > W(x) }.
A sequence (x") is said to converge to x in the weak topology iff
<x", h> --> <x, h ) for all h in H. L~,, the space of real valued functions on
R which are bounded a.e., is a dense subset of H (footnote 5).

There are k agents, indexed by i. In all but the last section, the consump-
tion set for the ith agent is H. In the last section we consider consumption
sets K which are general convex sets in H. Society's endowment Sl is the
sum S2, + - - - + Qk , where S2 ; is the initial non-negative endowment of
individual i. A function u : RZ --* Ris said to satisfy the Caratheodory condition
if u(c, t) is continuous with respect to c E R for almost all t E R, and
measurable with respect to t for all values of c. An allocation x is a vector
(x ,, . . ., xk) E Hk. Afeasible allocation x is an allocation such that Y_ ; x ; <, 0.
The set offeasible allocations is denoted F Each individual i has a con-
tinuous real valued utility function W; defined on a neighborhood of the
consumption set K which is concave and increasing, i.e ., if u > v, then
W; (u) > W, (v). The utility level of an allocation x denoted W(x) is the
k-dimensional vector (W,(x,), . . ., Wk(xk)), also called the utility vector.
A utility vector is weakly efficient if there is no other feasible allocation
(Z,, . .., zk) such that W; (z ;) > W; (x;) for all i, and W; (z ;) > W; (x;) for some
i. The Pareto frontier is the set of weakly efficient utility vectors in the

s The analysis can easily be extended to real valued functions on R", n > 1 .
v Chamberlin and Rothschild [6] give a straightforward economic interpretation of L;

norms in models with infinite dimensional commodity spaces .
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positive cone Rk+ . Society's endowment Sl is said to be desirable if
W, (aQ) > W; (0) for all a > 0, and all i. This is always satisfied if Wl is
strictly increasing, W,(0)=0, and the initial endowment S2 is positive . Let
d denote the unit simplex in Rk, A = { y E Rk+ : Y_ ; y, = 11 . A feasible
allocation (x,, . . ., xk ) is a quasi-equilibrium when threre is a pricep :A 0 with
p, S2, > = < p, x ; > and (p, z > > < p, x; > for any z with W, (z) > Wi (x,),

i = 1, . . ., k. A feasible allocation (X,, . . ., xk) is an equilibrium when it is a
quasi-equilibrium and W; (z) > Wi (x,) -+ ( p, z ) > ( p, xZ > . The latter holds
at a quasi-equilibrium such that ( p, S2 ; > > 0 for any i. The cone defined by
a set YandayeYisC(Y,y)={z=~(w-y)+y, we Y,~>0}.

3 . ONE-CONSUMER RESULTS

In this section and all others until Section 6, individual consumption sets
are the whole space H. The following result addresses the problem of find-
ing supporting prices for individually efficient positive commodity bundles
(even though the positive cone of H has an empty interior) . Because H is
a Hilbert space and thus self-dual, a non-zero supporting price is always a
non-zero function in H. Example 1 below shows inter alia that this result
is not true in 1' , even though l + has an interior . The reason is that the00

dual of l,,,, contains "purely finitely additive measures"; these are non-zero
continuous linear functions on h which do not admit representation by
non-zero real valued functions.

LEMMA 1 .

	

Let x E H be a commodity bundle, and W: H -> R a con-
tinuous, concave increasing function, for which there exists z with
W(z) > W(x) .

	

Then there exists a price p E H+

	

such that

	

11p~~ = 1, and
(p, y > > ( p, x) for all y satisfying W(y) > W(x).

Proof.

	

This follows from the continuity of W; Chichilnisky [8, 9] .

EXAMPLE 1 .

	

A continuous concave function on l + which does not admit
an extension to a continuous concave function on H, andprovides a counter-
example to Lemma 1 on l ' .

For c E [0, oo ), define u,(c) = 2`c for c < 1/22`, u,(c) =1/2` for c > 1/2" as
shown in Fig. 1. For any sequence c in l' let W(c)=Y

	

, u,(c,) . Then if
sup, c, < K,

	

W(c) < K(Y, 1/2`) < oc .

	

W is thus well defined, continuous,
concave, and increasing on 1' . Let ac-l + be defined by a, = 1/22`+ `, and011

let Wa_ { y E 1. : W(y) > W(a) } . Now assume that p is a supporting price
for the set Wa at a, i .e ., p is a continuous positive linear function on l",
satisfying p(y) >p (a) whenever y E Wa. Let p, =p(e'), where ej' =1 if t =j,
and 0 otherwise . These p, define the "sequence part" of the continuous
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U,(Cj

e

FIG. 1 .

	

Illustration of Example 1 . The functon W: t,_ -" '3Z is continuous and concave. It
gives rise to preferred sets supported only by zero prices . This example shows that Lemma 1
cannot be obtained for functions on 1. + .

linear functional p. By the usual marginal rate of substitution arguments,
p, =p,2'- ' . We shall show that this leads to a contradiction when p, :A0.
Define z E l y by z,= 1 /p, and z" E l,,, by z; = z, if t < n and 0 otherwise.
Then z - z� is nonnegative for all n, so that p(z) >p(z"). However, p(z� ) _
Y-, p,z, = n >p(z) for some n sufficiently large, which is a contradiction.
Therefore p I = 0 and p, = 0 for all t, i.e ., the sequence part of any sup-
porting price p for W" at a is identically zero . The only possible supporting
prices for W° are continuous linear functions on l, whose sequence part
is identically zero .

Note that not only is the function W continuous and concave on lx c H,
but it is also well defined, continuous, and concave on H+ . However, the
same argument shows that the set W° cannot be supported at the alloca-
tion a by a non-zero price p E H. It follows that Wdoes not satisfy the con-
ditions of Lemma l . What fails is that W is not defined over all of H, and
neither does it admit an extension to a continuous concave function defined
over all of H: Lemma 2 shows why. The reason is that the slope of each
u,(c) at 0 increases with t beyond any bound. For an extension of a to the
negative orthant to be concave, the values of u, (c) when c< 0 must lie
below the linear extension to negative c's of u,(c) for 0 < c < 1/22` . Namely,
for c <0, u, (c) <, 2'c. However, this would violate the necessary and suf-
ficient conditions for continuity in H provided in Lemma 2 (see Fig. 2) .



U,(C

1/2`

FIG. 2.

	

A concave extension of W to the negative orthant contradicts the necessary and
sufficient conditions for continuity in H given in Lemma 2, as illustrated in Fig. 3.

This shows that a continuous concave extension of W to all of H does not
exist .
The space in which continuity is established is therefore important . For

this reason we provide the following characterization of additively
separable continuous functions on H:

LEMMA 2 .

	

For some coordinate system of H, let W: H -+ R be defined by
W(c) = fR u(c(t), t) dy(t), where u : RZ - R satisfies the Caratheodory condi-
tion . Then W defines a continuous function from H to R if and only if
Iu(c(t), t) I <a(t)+b IcI 2 ,

	

where

	

b

	

is

	

a

	

positive

	

constant,

	

a(t) >, 0,

	

and
fR a(t) dp(t) < oo .

Proof.

	

See Chichilnisky [8] .
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Figure 3 illustrates continuity in H. An implication of Lemma 2 is that
continuity in H implies a measure of discounting on the variable t . This
point is developed in Heal [25] .
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4. PARETO EFFICIENT ALLOCATIONS

FIG . 3 .

	

Two utility functions satisfying the conditions of Lemma 2. Their integrals with
respect to the measure are therefore H-continuous . a(t) and -a(t) need not go to zero as t
goes to infinity because we require f , a(t) du < oo where f,,z dy(t) < oo .

The next result extends Lemma 1 to the many agent case . Recall that in
this section and the next, the individual consumption sets are all of H.

LEMMA 3.

	

Let z = (x 1 , . . ., xk) be a weakly efficient allocation, and for
1 < i < k let W; be a concave, strictly increasing, continuous function . Then
there exists a price p E H +,

	

11 p

	

1, such that < p, y > >, < p, x > for all y
satisfying W;(y) >, W;(x;).to

"The parallel to our Lemma 3 in Mas-Colell [27] requires an additional condition
denoted "uniform properness" which is not required here, and which is strictly stronger than
our assumptions . We assume H' continuity of the utilities instead, and it is easy to see that
our condition of continuity implies "properness at one point" but it is strictly weaker than
"uniform properness ." To this end, consider a continuous strictly increasing function
W: H~ R. Then W(x- .lh) < W(x) implies that there is a ball around (x-Ah) where this
inequality is also satisfied. Therefore for all x there exists h in H+ and a neighborhood V of
the origin such that W(x -Ah + y) > W(x) implies Y~AV. The "uniform properness" condition
of [27] requires the existence of one h e H+ and a neighborhood V of {0} which are valid
for all x in H such that W(x-A +y) > W(x) implies y ~ n V. Our condition of continuity is
therefore strictly weaker than the "uniform properness" condition of [27], since in our case
the h and S may vary with x, while "uniform properness" requires instead the existence of one
h and one 6 which must be the same for all x in H. It is also easy to see that properness at
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Proof.

	

Recall

	

W;, = {x EH : W; (x) >,W; (x i) } .

	

Let

	

V=Y_, W ,,

	

and
v = x i + ' ' ' + xk E V. By Lemma 1, Vi there exists a positive price pi E H+
which supports W i at xi , ~IpIl = 1 Since z is weakly efficient, and the Wi

are strictly increasing, if v'< v, then" v' O V. Furthermore, the set V is
convex and has a non-empty interior because for each i, the set W" has a
non-empty interior by continuity of Wi . It follows from Chichilnisky and
Kalman [ 12, Theorem 2.1 ] that there exists a non-zero supporting price p
for V at v. V contains a translate of the positive orthant because each W i
does . Therefore p is positive and we can take 11 p 11 = 1. It is now easy to
check that p supports W i at x i . This is because, by construction, p is mini-
mized over V at v. The minimum of a linear function on the sum of sets
is equal to the sum of the minima of the linear function on each set, i.e .,
p(v) _

	

p(x'), where x' minimizes p over the set W;i . Since Vi p(x')
p(xi ),

	

and

	

Ytp(x')=p(v)=Y;p(xi),

	

then p(x')=p(xi)

	

for

	

all

	

i,

	

i.e.,
pi (x i) =min pi (y) by E Wxi and Vi . Therefore p supports Wx, at xi , as we
wished to prove.

In order to establish the next result, the following Condition (C) is
required on preferences. Example 2 exhibits economies satisfying it . This
condition eleminates sequences of feasible allocations which increase utility
indefinitely, and can therefore be interpreted as a non-arbitrage assumption
in the case of securities markets, (for a discussion" see, e.g ., Kreps [26],
Chichilnisky [ 15 ] ). This assumption is unnecessary when consumption sets
are bounded below, because when coupled with the feasibility condition,
boundedness below of the consumption sets ensures that the set of feasible
allocations preferred by all to a given allocation is always bounded. Condi-
tion (C) is, however, needed to prove the boundedness of the feasible
allocations preferred by all to a given allocation when consumption sets are

one point is identical to the cone condition introduced first in Chichilnisky and Kalman [12,
Theorem 2.1, p. 25] as a necessary and sufficient condition for the existence of a supporting
hyperplane for convex sets which may have an empty interior ; see also Chichilnisky [14] . The
cone condition of Chichilnisky and Kalman [12] requires that if Y is a convex set, then
there exists a w which is at a positive distance from the cone defined by Y and xc Y,
C(Yx)={z=a(y-x)+x, ycY, a>0} ; see Chichilnisky and Kalman [12, (a) of
Theorem 2.1 p. 25]. When Y is the convex set of points which are preferred (by > ;) to x, this
condition is identical to requiring that there exists a vector w > 0, and an open neighborhood
of the origin Vsuch that : (x -aw) + z >; x implies z ~ aV, which is the "properness" condition
for the preference >, [27, p. 1043], see Chichilnisky [14] .
" For otherwise there would exist an allocation z" = (x,',

	

., xk) s.t . Y_ ; x" _< v so that z" is
feasible, and such that Wi (x ;) > W,(x i ), contradicting the fact that z is weakly efficient .

iz This relates to other non-arbitrage conditions, e.g., the limited arbitrage condition of
Chichilnisky [15] : (C) implies (and in some cases it is equivalent to) the existence of a price
p>0, such that if a sequence of feasible allocations (z +S2) � = ((x, )�+d2, , . . ., (xk ) � + Qk)
satisfies lim� Wi((xi)� +Q,)=sup,,x W(y) for some i and W'((x,)� +S2;) > W'(Q,) for all
other j, then there exists N s.t . ( p, (xi), > > 0 for all n > N .
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not bounded below, as is the case in models with unbounded short sales
where the consumption set is all ofH. Condition (C) means that it is not
possible to obtain unbounded utility from bounded resources .

(C)

	

Non-arbitrage.

	

Let

	

z=(x, , . . ., xk) C F.

	

If

	

a

	

sequence

	

(z") E F
satisfies I1z"II --* oo and z" c W", then I Ns.t .

	

W.,"I for n > N.

LEMMA 4.

	

Let W; : H-). R be increasing .for all i. Condition (C) implies
that the set offeasible allocations at which the utility values for each agent
achieve or exceed those achieved at any given z E F is norm bounded.

Proof.

	

Let z" = (x;, . . ., xk ) be a sequence of feasible allocations in F
(defined in Sect . 2) such that I1z"I1 --> oo . Without loss of generality we may
assume that Y; x,' = S2 for all n . By assumption (C), if for some i and all
n, x`,.' E W i, then Ij s.t . x" 0 W' I for n > N, so that the set of feasible alloca-
tions in which each agent's utility level achieves or exceeds those achieved
by each agent at the allocation z is norm bounded .

EXAMPLE 2.

	

An economy satisying Condition (C). Consider an economy
with a social endowment S2 E H+, and with two agents having the same
continuous

	

strictly

	

concave

	

and

	

increasing

	

utility

	

W: H-+ R,

	

where
W(c) = Y, u(c(t ))p(t), W(0) = 0, u: R -> R, u(c) = c if c < 0, and u(c) = ac if
c >, 0, for some number a, 0 < a < 1 . By Lemma 1, W is continuous on H.
Note that u satisfies two properties . Property (a) is that da > 0, u(a + b)
u(a) + u(b) .

	

This

	

is

	

obvious

	

when

	

b>0

	

because

	

in

	

this

	

case,
u(a + b) = u(a) + u(b) . Now take b < 0 and (a + b) >O. Then u(a + b) =
cc(a + b) > as + b = u(a) + u(b), because a > 0 and b < 0. And when b < 0
and

	

(a + b) < 0,

	

then

	

u(a+ b) = a + b > as +b = u(a) + u(b) .

	

Therefore
b'a > 0,

	

u(a + b) >, u(a) + u(b) .

	

Property

	

(a)

	

of

	

u

	

implies

	

that

	

for

	

all
w E H+,

	

W(w+ x) >, W(vv) + W(x) .

	

The function

	

u satisfies

	

a

	

second
property

	

(b) :

	

b'c,

	

IN>0,

	

s.t .

	

u(c- v) - u(c) < - [u(c + v) - u(c) ]

	

if
IIv11 >N.

	

Property

	

(b)

	

of u implies

	

that

	

if (x")

	

is

	

a

	

sequence in

	

H,
11 x"11 - oc, and W(x") > W(0) = 0, then 3N s.t . for n > N and all wE H+,
W(iv-x")< W(w). We may now prove Condition (C) for this economy.
Assume without loss of generality that the initial endowments of the agents
are 0 E H+ and y E H+, respectively . Since W is increasing we may also
assume without loss that y = S2 . Consider now an unbounded sequence of
allocations (z") = (x", y") E Hz. By monotonicity of Wwe may assume that
y" = S2 -x", so that both x" and y" are unbounded . Therefore we consider
an unbounded sequence (x") in H along which the utility of the first agent
increases, i.e ., W(x") >, W(0) . We shall prove that the utility of the second
agent will eventually decrease, so that Condition (C) is satisfied .
Since

	

Ix"11 ---> oo,

	

W(x") >, W(O)=O,

	

and S2 E H+,

	

property

	

(a) implies
that along this sequence W(S2 + x")

	

W(Q) for n sufficiently large : this
is because W(Q+x")=y, [u(Q(t)+x"(t))]lu(t), and for each t, by (a),
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u(Q(t) + x"(t)) > u(Q(t)) + u(x"(t)) so that W(Q + x") > I t u(S2(t)) =
W(Q). Finally since W(Q + x") > W(Q) for large n, by property (b)
W(O- x") < W(Q) for large n, as we wished to prove. It is tedious but
standard to extend this example to k> 2 agents having similar but different
utilities .

The next lemma establishes that the Pareto frontier is closed . '3

LEMMA 5. Assume that society's endowment S2 is desirable, and the
utilities of the agents are continuous, strictly increasing, concave, and satisfy
Condition (C). Then on any ray r of the positive cone in Rk+ there exists a
non-zero weakly efficient utility vector . The Pareto frontier is closed, and the
map v(r) =sup;(W'), b'Wicr, is continuous in r .

Proof. Since the initial endowment is desirable and each W; is
increasing for each ray r in Rk+ there exists a feasible allocation (x°,, . . ., x°)
s.t . W, (x,° ), . . ., Wk (xk) is a non-zero vector in r. Consider the set
S = {(XI,..xk) EF : iii, W; (x ;) > W; (x°) }. S is a bounded set by Lemma 4,
and is convex and closed in Hk . Since Hk is reflexive, its weak topology
coincides with its weak* topology : by the Banach-Alaoglu theorem
(Dunford and Schwartz E191) S is weakly compact. Consider now a
sequence of utility vectors (Wj) contained in the ray r E Rk + . Without loss
of generality we may assume that (Wj) is increasing . By definition, W' =
W,(x',), . . .,

	

Wk (x ))

	

for

	

some

	

sequence

	

(xj) _ (x , . . ., xk) c F

	

Let
v(r) = supj ( WI) in r. We shall prove that v(r) is a utility vector corre-
sponding to some feasible allocation . Let x be the weak limit of the
sequence (xj) in S, which exists because S is weakly compact. The Banach-
Saks theorem (Dunford and Schwartz [19]) implies that there is a sub-
sequence of (xi), denoted also (x i ), such that lim m((x'+

	

+xm)/m)=x
in the norm . Therefore,

lim (Y- W; (x ;)/m)=1im W;(x)=v ;,

	

( 1 )

the ith component of v(r) = sup,( W' ) : this is the Banach-Saks theorem in

13 This lemma cannot be established in 1,, or La� where it is generally false, exemplifying
the problems of interpretation arising from the use of such spaces . An example in [27]
illustrates this point by showing a Pareto frontier in 1,x, which is not closed even though all
preferences are 1 continuous . To prove existence of an equilibrium, Mas-Colell [27] assumes
that the Pareto frontier is closed (see [27, "closedness condition" on p. 1046]), an assumption
which is made without reference to primitive conditions on preferences or endowments .
A similar assumption appears in Brown and Werner [5, assuption At]. Here, instead, we
prove that the Pareto frontier is closed from the properties of preferences . This is done even
when the consumption set for each consumer is the positive orthant as in [27], and it is also
proved here where the consumption set of each agent is the whole space H, or more general
consumption sets . The latter two cases are not considered in [27] .
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the line. Since S is convex, (x` +

	

+x"')/m is in S for all m. By concavity
of W;,

Note, however, that

because by assumption the sequence of utility vectors (W,') is increasing in
the ray r and the function W; is increasing and concave. Since S is bounded
and W; is continuous, (1), (2), and (3) imply that Vi = 1, . . ., k, the sequence
W; ((x; + - - - + x"')/m) converges to v, in Rk . This means that
v(r) = sups ( W') is reached within S, for any sequence of utility vectors
(W') in r . Since S is bounded and

	

W; is continuous, I W(r) in r s.t .
W(r) > (W' ) dj, for any sequence (W') in r . This completes the proof that
along every ray r in Rk there is a non-zero weakly efficient vector . We shall
now show that the Pareto frontier is closed in R k + . If the limit v E Rk+ of
a sequence (W') in the Pareto frontier is not in this frontier, consider the
ray r in Rk+ through the origin, passing through this limit point v. There
exists a non-zero weakly efficient utility vector p E Rk+ on that ray. If p :A v
then either ,u is not weakly efficient or else for j> N, some N W' is not
weakly efficient. In either case we have a contradiction. Thus P = v and the
Pareto frontier is closed . The last statement of the lemma is the closed-
graph theorem.

S . EXISTENCE AND OPTIMALITY OF COMPETITIVE EQUILIBRIUM WITH
UNBOUNDED SHORT SALES

The following regularity condition is now required on preferences. It
ensures that there exist supporting hyperplanes to efficient allocations that
do not approach {0} weakly .

(R)

	

There exist an agent i, 1 < i < k, and a non-empty set Hc H+
such that 0 ~ the weak closure of H and Hc the set of supporting hyper-
planes to the preferred set W-1' at x, Vx c- H.

EXAMPLE 3 . Preferences satisfying Condition (R) . Condition (R) is
satisfied by a smooth preference W; whose gradient vectors DW;(x) belong
to a weakly closed set disjoint from the origin, or to a norm closed, norm
bounded and convex set disjoint from the origin . Condition (R) is satisfied
when there exists a vector v and an E > 0 such that for all xEHthe supporting
hyperplanes for W; have normals pi(x) with < p;(x), v> > s > 0. This latter

W, (Y-x,gym) >Y, W; (x; )gym .
i

(2)

W . (Y_ xi/m) \ WI (x') (3)
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condition is satisfied for example by all preferences in [27] . The preferences
of Example 2 satisfy Condition (R). In the following result, the agent's
consumption set is H:

THEOREM 1 . Consider an economy with a desirable initial endowment
Q= (Q 1, . . ., Qk) in Hk +, and such that the individual utilities W; : H-+ R are
continuous, strictly increasing, concave, and satisfy Conditions (C) and (R) .
Then there exists a competitive quasi-equilibrium allocation (x*, . . ., xk) with
a supporting price p E HX , 11p11 = 1 . This allocation is a competitive equi-
librium when all initial endowments S2 ; are strictly positive . The competitive
equilibrium is Pareto efficient.

Proof.

	

We define a correspondence 0 : d -> T= {y E Rk : yk- , y; = 0 }
with the property that any of its zeroes is a quasi-equilibrium." For each
r E d, let x(r) = (x, (r), . . ., xk(r)) be the feasible allocation which gives the
greatest utility vector colinear with r . Such an allocation defines a non-zero
utility vector which depends continuously on r by Lemma 5. Without loss
of generality assume that Y_, x ; (r) = S2 . Now let P(r) = {pE H + : Ilpll < 1,
p supports x(r) } . P(r) is convex, and is non-empty by Lemma 3 . Now
define 0(r) = I (<p, 0 1 -xl(r)>, . . ., <P, Qk - xk(r)>) : p E P(r)} . 0(r) is non-
empty and convex valued, Y_ ; z ; = 0 for z E 0(r) by Walras' Law, and
0 E 0(r) if and only if x(r) is a quasi-equilibrium .
The next step is to show that 0 is upper semicontinuous, i.e ., if

-r" -> r, z" E0(r"), z" -> z then z E 0(r) . Consider now the feasible allocation
x(r) in Hk, where r = lim"(r") . Let a be any other allocation
with W;(u;)> W;(x i (r)), where x ;(r) is the ith component of the vector
x(r) .

	

Since

	

r" -> r,

	

eventually

	

W; (u;) > W; (x ;(r")),

	

which

	

implies
< p", u; ) >, < p", x; (r") > = (p", Sl ; > - z ; , where z,' is the ith component of
z" E 0(r), and p" C P(r"): this follows from the definitions of z" and of p" .
Let (p") be any such sequence of price vectors in P(r"). Closed convex
bounded sets in H are weakly compact by the Banach-Alaoglu theorem
(Dunford and Schwartz E 1 91) because H is reflexive ; thus the set
{ p : j1 -pll < 1 } is weakly compact. 15 The weak closure of the set U r P(r) of
supporting prices to the preferred sets of the agents is contained within
{p : 11 p 11 < 11, and is weakly compact as well . There exists therefore a p
with ~j p jj < 1 and a subsequence (pm ) of (p") such that < p', f ) ---> < p, f'
for all f in H. Note that by Lemma 3 each p"' supports the preferred sets
of all agents at x(r), so that by Condition (R) the weak limit of p"' = p :A 0,

"This follows a method which was introduced by Negishi [28] .
's In Lx� the Banach-Alaoglu theorem proves that convex, bounded, and closed sets are

instead weak* compact (Dunford and Schwartz [19]). Only in reflexive spaces is the weak*
topology equal to the weak topology .
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so

	

we

	

may

	

take

	

1I p 11 = 1 .

	

In

	

particular

	

such

	

a p

	

exists

	

for f= u,

	

i.e.,
< p"', u ) -> < p, a ) . Therefore in the limit < p, u > > < p, Q ; > - z ; . Since this
is

	

true

	

for

	

all

	

u

	

with

	

W,(u,) > W; (x ; (r) ),

	

it

	

is

	

also

	

true

	

for

	

u

	

with
W; (u;) > W; (x ; (r))

	

and

	

in

	

particular

	

for

	

u=x,

	

i.e.,

	

<p, x; (r) > >
< p, Q ; > -z ;

	

for

	

all

	

i

	

so

	

that

	

< p, Y; x; (r) > > < p, YZ Qi > - E j z, .

	

Since
Y_ix1(r)=Y_jQj and ~',;z;=0, we have <p,xr(r))=<p,Qj>-Zi for all l,
implying that z E 0(r) as we wanted to prove. The proof is completed by
showing that 0 has a zero . This is now a standard application of
Kakutani's fixed point theorem. Consider the map I' defined by
F(r) = r + 0(r) . It is upper semicontinuous, non-empty, and convex valued .
If r is in the boundary of d, F(r)Ed:ifr;=0 for some i, then x ; (r) is
indifferent

	

to

	

0

	

for

	

i,

	

so

	

that

	

0>p - x; (r) > 0 .

	

This

	

implies

	

that
z, = <p, S2 ; - x ; > >0. Since I' is non-empty, upper semicontinuous, and
convex valued, and it satisfies the appropriate boundary conditions, we
may use Kakutani's fixed point theorem : I' has a fixed point in d, which
is a zero of 0. This completes the proof of existence of a quasi-equilibrium .
When all initial endowments S2 ; are strictly positive, the value of Q j at

the equilibrium prices is also strictly positive, i.e ., f k p(t)Q;(t) dic(t) > 0 .
More generally, in a Hilbert space p > 0, 0 > 0 and < p, SZ > = 0 imply p = 0.
It follows that when all initial endowments S2 ; are strictly positive, then
< p, Q~ > > 0 for all i and therefore the quasi-equilibrium is a competitive
equilibrium. In particular, the value of the society's initial endowment S2 is
always positive, i.e ., <p, Q > > 0. That the competitive equilibrium is
Pareto efficient follows now from standard arguments (see, for example
Debreu [18]). /

Remark . In other infinite dimensional spaces such as Lx, or C(R), the
fact that all initial endowments are strictly positive does not imply the
existence of a competitive equilibrium. This is because, in contrast to
Hilbert spaces, in such spaces p > 0, Q > 0, and < p, S2 > = 0 does not imply
p=0. For example, consider the strictly positive vector OE/,, defined
by 0, = (1/2)', and the positive continuous linear function defined by
p(y) =1im; yr if y has a limit and otherwise extended to the whole space by
the Hahn-Banach theorem. Then < p, S2 > = 0 even though p > 0 and S2 > 0.

EXISTENCE AND PARETO OPTIMALITY OF EQUILIBRIUM WITH
GENERAL CONVEX CONSUMPTION SETS

We turn now to the case where each agents' consumption set is a given
set Kc H satisfying :

K is closed and convex, K :A H, and y > xE K implies y E K.
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A particular case is K= H+, the positive orthant of H, so that K may
have an empty interior. Each individual i has a utility function W; defined
on a neighborhood of K which is continuous with respect to the norm of
H so that Lemma 1, which depends on continuity, and the characterization
of continuous functions provided in Lemma 2, both hold . A feasible
allocation is now a vector x= (x,, . . ., xk) EKk satisfying Y_ ; x; < Q. A utility
vector (WI (x, ), . . ., Wk (xk)) is weakly efficient if there is no other feasible
allocation (Z,, . . ., zk) such that W; (z ;) > W; (xi) for all i, and W; (z ;) > W; (x ;)
for some i. A weakly efficient allocation is one whose utility vector is
weakly efficient . Note that the proof of Lemma 3 is not valid when K has
no interior, because the proof requires that V the sum of the preferred sets,
has a non-empty interior. The relevant set is now the sum of the preferred
sets intersected with the consumption set K, which may have an empty
interior . However, the proof of Lemma 3 is still true with a modification .
The following result establishes the analog to Lemma 3 for consumption
sets satisfying (*):

LEMMA 6.

	

Let ~ = (x, , . . ., xk) be a weakly efficient allocation in Kk and
for 1 < i< k, let W; be a strictly concave and strictly increasing continuous
.function .

	

Then

	

there exists a price p EH+,

	

11 p11 = 1, such that

	

<p, y>
p, x ; > for all y EK satisfying W; (y) >, W;(x;).

Proof.

	

Consider the weakly efficient allocation

	

_ (x,, . . ., xk) in Kk and
let x = y; x;. Let V; _ ( W' , n K). We must show that there exists a p EH
with jpjj = 1, supporting Y ; V; at x. For all i the function W; is continuous,
it attains a minimum

	

within

	

W, at x;,

	

and

	

is increasing so

	

that
y < x; -> y ~ W;i .

	

By Chichilmsky and Kalman

	

[12, Theorem 2.1 ], this
implies that there exists a non-zero q ; EH + supporting the set V; at x; .
Equivalently, there exists a non-zero p; EH + supporting the set V; - x; at
W}.}. Consider the set B; = iu EH : 'dz E (Vi -x;) < U, z

	

>, 0 }, namely B; is
the set of supports to V; - x; . B; is convex and closed . Since K satisfies (* )
and W; is increasing, B; c H+ . If iv* :A 0, v* E n ; B;, then u* is the desired
support for the set Y ; V; at x, and thus provides the desired support for the
weakly efficient allocation z.
We shall prove that n ; B; :A 0 by induction on k, the number of agents .

We saw that this is true for k = 1 . Assume that the Lemma is true for k - 1
agents, and assume, to the contrary, that n i Bi = 101, i= 1_.J. For any
given i, define D ; = {z EH : < Z, y ) >, 0 dy E Y_ ; # ; V; - xi } . This is the closed
convex cone of supports of the set Y;,; V; - x; . By the induction
hypothesis D; o 10) . By condition (*) on K and the increasingness of W;,
D; c H+ . Note n ; B; _ { 0 } implies B; nD;_ { 0 } for all i, which we now
assume .
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Take w =A 0 in D ; . Then w + D; c D;, so that dz E B; and y E D;, w + y =A z,
or equivalently w :A z - y. Since this is true for all z E B; and y E D,, then w
is not in the cone B ; - D;. Since the set B ; - D ; is closed, this implies
d(w, B; - D;) > 0 ; by Chichilnisky and Kalman [ 12, Theorem 2.1 ], there is
therefore a p E H s.t . p supports B; - D; at {0 } . Equivalently, p separates B;
from D;, i.e ., dx E B; x O O, <p, x > >,O, and dy E D; y =AO, <p, y> <,O. For
any such x, y, d(x, y) > 0, so that the separation can be made strict :

<p,x>>O dxOOinB;, and <p,y><O dy :AOinD ;, (1)

Since B; is the set of all supports of the set V; - x;, (1) implies ]~ > 0, such
that ).p E V; - x ; . For any a < ti, since 0 E V; - x; and V; - x ; is convex, ap
is in V; - xl as well . By strict concavity of W;, W; (ap + x;) > W; (x, ).
Similarly, (1) implies that there exists a y > 0, such that -yp E Y-, ; # , V; - xj .
Let l3 = min(a, y). Then

flpC- Vi- xr,

	

-apC- Y VJ -XJ ,
96 i

Wi(flp+xr)> W, (xJ_

	

(2)

Consider now an allocation that assigns /3p + x; to the ith agent and
- lap +I;# x., to the rest ; it is feasible because lip + x;-lap+Y_;# ; xi=
~, x;. By (2) such an allocation exists which strictly increases the utility of
the i th agent without decreasing that of the others, contradicting the
weak efficiency of ~. The contradiction arises from the assumption that
n; B;= {0} . Therefore, there exists a non-zero vector v* inn; B; . Since K
satisfies (*) and W; is increasing, v* EH +, and provides the desired
support for the weakly efficient allocation ~, as we wished to prove.

We now study the Pareto frontier when consumption sets K satisfy (* ).
Note that when the consumption set K is bounded below, Lemma 4 applies
and there is no need for assumption (C). When K is not bounded below,
however, Condition (C) is needed :

LEMMA 7.

	

Assume that society's endowment Q is desirable, the consump-
tion set K satisfies (*) and the utilities of the agents are continuous, strictly
increasing, and satisfy Condition (C) . Then on any ray r of the positive cone
in Rk + there exists a non-zero weakly efficient utility vector . The Pareto
frontier is closed and the map v(r) = sup,,(W!) V W! E r is continuous in r.

Proof.

	

This follows directly from the proof of Lemma 5 by noting that
the set S' _ { (x ,, . . ., xk) EFn K : Vi,

	

W; (x;) > rk } is bounded, closed, and
convex under the assumptions.

We now require the analog of Condition (R) in Theorem 1 for
economies with a consumption set K satisfying (*). The following Condi-
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tion (T) is a uniform version of the cone condition of Chichilnisky and
Kalman [12], Chichilnisky [14] . Condition (T) is used to ensure that
there exists a non-empty convex closed set P(r) consisting of supporting
prices for each weakly efficient allocation on a ray r E Rk +, and that the
union of these sets UY Y(r) is contained in a weakly compact set which
excludes {0} . This is precisely what is needed to prove the existence of a
competitive equilibrium supported by non-zero prices using Negishi's
arguments." This condition bounds the rate of substitution between
commodities [14] . It is satisfied for example by all preferences in [27] .

(T)

	

There exists a vector w, IIwJJ = 1, which is at a distance d from
the cone C(W; n K, x), for all x E K and i, 1 < i <, k, 1 > d> E > 0.

The equilibrium of an economy with a general consumption set K is
defined as follows . A feasible allocation is a quasi-equilibrium when there
is a price p =A 0 with

	

<p, z -xi > >0 for any z E K with

	

Wi (z) > Wi (xi ),
i = l, . . ., k.

	

A feasible allocation is

	

an equilibrium

	

when it is a quasi
equilibrium and Wi (z)> Wi (x i)

	

--), < p, z -xi > > 0. The latter holds at a
quasi-equilibrium such that <p, 0 i > > 0 for all i. In the following theorem,
Condition (C) is unnecessary when the consumption set K is bounded
below, i.e ., ]z E H s.t . dh in K, h > z.

THEOREM 2.

	

Consider an economy where each agent has a consumption
set K satisfying (* ), a desirable initial endowment S2 E Hk+, and such that the
individual utilities Wi : H-> R are continuous, strictly increasing, strictly con-
cave, and satisfy Conditions (C) and (T). Then there exists a competitive
quasi-equilibrium allocation (x*, . . ., xk) with a supporting price p E H+ ,
IIpIl = 1 . This allocation is a competitive equilibrium when all initial endow-
ments SZ i are strictly positive . The competitive equilibrium is Pareto efficient.

'6 Condition (T) is a special case of (R), as shown in the proof of Theorem 2. Note that
neither (R) nor (T) assumes that the set of all supports to all weakly efficient allocations is
weakly bounded away from zero, but rather that there exists some convex set of supports for
each weakly efficient allocation .(within the consumption set) such that the union of these
convex sets over all such allocations is weakly bounded away from zero . The reason is that
if we take the positive cone H+ as a consumption set (it satisfies (*)) then H+ has "too
many" supports, and thus the vector 0 is in the weak limit of the union of the convex sets of
supports . To see this consider H=1Z . Then the functions (e i ), i = 1, . . ., defined by ej

.
=I if i=i,

and e'=0 otherwise, all support H+ and 0 is in their weak limit. We owe this remark to a
referee. Note that this is not a problem of lack of existence of supports : it is, rather, a problem
arising from having too many supports . The natural solution to this problem is therefore to
eliminate judiciously some of the supports, and this is achieved by constructing for each
weakly efficient allocation a convex set of supports in such a way that their union over all
such allocations is weakly bounded away from zero . This is precisely what Conditions (R) and
(T) do .

642/s9/2-io
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Proof. The proof follows that of Theorem 1 except that P(r) in
Theorem 1 is replaced by P'(r)= {pcH+ : ~~p11 < l, p supports x(r) and
p, -w>> EZ for a given w with llwjl = 1 } . We shall show that b'r, P'(r) is

not empty. By Lemma 6 for each r E Rk+ there exists a supporting hyper-
plane p E H+ for the weakly efficient allocation x(r) . We shall show that
such a p can be chosen so that <P, - w> > E 2 . As the distance between w
and C(W;, n K)-x;is d>, E, and ~j w ll = 1, there exists y c- B; = closure of
C(W;, n K) - x;, such that ll y - w ll = d. Convexity of C(W ,n K) -x;
implies that <y- w, y > =0 and <y-w, z> > 0 for all z E C(W , n K)-x;.
Let p=(y-w). Then ljpjl 2 =llY - wll 2 =<Y- w,Y - w>=<Y- w,Y>+
<y-w, -w> _ <y-w, -w> = <p, -w> since <p, y>=0. Therefore
p, -w> = 11 y- Will 2 = d2 > EZ and thus b'r,

	

the set

	

P'(r) is not empty.
P'(r) is also convex and closed . Now consider as in Theorem 1 a sequence
(p') in P'(r). By construction, (p') is contained in a weakly compact set,
the unit ball of H. Moreover, assumption (T) assures that the weak limit
of (p') cannot be zero, because for each m,

	

p`", -w> >E
Z and w;

	

0. The
rest of the proof follows that of Theorem 1 .

APPENDIX : EXTENSION OF THE EXISTENCE RESULTS TO

SOBOLEV SPACES Hs AND TO LP SPACES

Let s and p be integers, 1 < s< oo, and 1 <p < oo . If f R --> R :f is Cs, let
11f Its=f (f(t)2 + . . . +Dsf(t) 2 dp(t)) < oo, where Dsf is the sth derivative
off The Sobolev space Hs is the completion of Cs under the norm II - II s .

Lp = ff. R -> R :f is measurable and f lf(t)PI dp(t) <

For all oo >p > 1, LP is a Banach (complete, normed) linear space. When
oo >p > 1 it has the following duality property : the space of continuous
linear real-valued functions on LP denoted L,* is Ly for 1/p + 1/q = 1 . In
particular, LP * = LP (Dunford and Schwartz [19]). One interesting feature
of the Sobolev spaces Hs is that for all s > 1, Hs is a Hilbert, and in
particular a self-dual, space with the standard inner product and countable,
orthonormal coordinate basis. Furthermore, by Sobolev's theorem
HS c Ck(R) if s > 1/2 + k, so that H` consists entirely of continuous
functions, H2 consists entirely of continuously differentiable functions, and
H° = L2 (see Adams [1], Nirenberg [29], Chichilnisky [7] ) . In all these
spaces, therefore, prices (which are elements of the dual space H'..) are also
continuous or differentiable functions . All the results stated in the paper
apply to Hs and LP spaces with oo >p > 1 provided the assumptions are
made in the respective norms of these spaces . The main assumption is the
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continuity of the utility functions . The following results characterize con-
tinuous functions in LP, 1 <p< oo, in HI and H2. As before all measures
p(t) are finite, i.e. f R p(t) < 00-

LEMMA 8.

	

Let

	

W(c) = fR u(c(t), t) dy(t),

	

with

	

u

	

satisfying

	

the
Caratheodory condition defined in Section 2. Then

	

W defines a norm
continuous .function from LP to R (1 <p < oc )for some coordinate system of
L� if and only if l u(c(t), t)J < a(t) + bl c(t)I P, where a(t),>0, f R a(t) du < oo,
and b>0.

The proof is the same as given for the case of L Z in Chichilnisky [7] .

LEMMA 9.

	

Given

	

a

	

coordinate

	

system for

	

H',

	

i = 1, 2,

	

a function
W(c) = f R u(c(t), t) dp(t) is continuous from H' to R if and only if the condi-
tions in Lemma 8 are satisfied for u andfor Du. W is continuous from HZ
to R if the conditions in Lemma 8 are satisfied for u, Du, and DZU.

The proof is the same as in Chichilnisky [8].
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