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We study social aggregation rules that satisfy a Pareto and a decisive majority condition. A rule
satisfies the decisive majority condition if whenever the voters can be divided into two internally
homogeneous groups (ie. groups within which all individuals agree about all possible choices)
and these groups have opposite preferences, then the majority'’s preference is respecicd. N
assumptions arc made about the outcome when the individuals have more than two different
preferences cven when a majority agrees on a choice x being preferable to another y. Therefore 2
decisive majority condition does not imply, iz, is strictly weaker than, majority rules. The main
result is that Pareto decisive majority rules are necessarily structurally unstable, in the sense that
the outcome preference, which is a vector field, will undergo major changes in structure in
response to small changes in the underlying parameters. The importance of structural instability
derives from the fact that small errors of observation will lead 10 drastically different answers.
An example of the result for three voters and with a two-dimensional choice space is also given.

1. Imroduction

Majority rules have an obvious appeal as voting procedures. However, it
has been known for a long time that they may contradict desirable properties
for aggregation of individual preferences. In particular, Condorcet’s paradox
(1785) has shown that majority rules are not consistent in general with the
property of transitivity of preferences.

It can also be proven that majority rules are unstable in the sense that
small shifts of the individual preferences may lead to a regrouping of
majorities and therefore to significant changes in the outcome of the vote.
This type of instability of the outcome with respect to underlying parameters
is usually called structural instability. It is a corollary of our results here that
majority rules are in general unstable in this sense.’

*This research was supported by the UNITAR Project on Technology. Distribution and
Morth-South Relations, and carried at the Center for Social Sciences at Columbia University. I
thank G. Debreu, R. Findlay, P. Hammond, H. Polemarchakis, L. Taylor, H. Yarian, M. Hirsch,
G. Heal and a referee for helpful suggestions.

150e [or instance a recent article of Schofield (1978) where a condition is given Lhat guarantees
the existence of a local cycle for majority voting rules; this condition is an extension of an earlier
one given by Kramer. Instability in their sense refers to the exisience of cycles. We, instead, use
a concept of structural stability akin to one used in mathematical physics and biology, to detect
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It could be argued, however, that majority rules are too restrictive,
especially in view of the Condorcet paradox and much of the subsequent
work in social choice theory.

A much less demanding requirement on the voting procedure is that it be
Pareto,? and that whenever the voters can be divided into two internally
homogeneous groups with opposite preferences, then the majority’s
preference be respected. We call such voting procedures decisive majority
rules,

Sen (1970) has shown that a decisive voter? is a dictator when Arrow’s
axiom of independence of irrelevant alternatives is accepted. A decisive
majority rule would in that case also be a “dictatorship of the majority™.
However, the axiom of independence of irrelevant alternatives is generally
considered to be too strong, and in this paper we do not require it. It should
be emphasized that a decisive majority rule need not be a majority rule in
our case.* As a consequence, we do not require the number of voters to be
odd. :

We study here two axioms on the rule that aggregates individual
preferences into a social preference. The rule must be Pareto, and majorities
must be decisive. We prove that any aggregation rule satisfying those two
axioms must necessarily be structurally unstable, namely, it must exhibit
drastic changes in the outcome as the individual preference undergo small
perturbations.- Pareto and decisive majority axioms are therefore inconsistent
with a form of continuity of the aggregation or voting procedure. This
discontinuity implies, in particular, that sufficient statistics for aggregating
preferences do not exist, and that ‘almost equals’ are treated very differently.

We use here techniques that were developed in Chichilnisky (1980, 1981)
for the study of Social Choice problems with topological tools. In
Chichilnisky (1980) it was shown that social rules that respect unanimity and
anonymity must be unstable. The results implied the lack of contractibility of
certainspaces of preferences. They are also related to the fact that no continuous
global representation from certain spaces of preferences P into spaces
of utility functions U can be constructed.®

when the structure of the problem or its solution undergo drastic changes with respect 1o
initial parameters. In our case both the initial parameters and their solutions are elements of
function spaces (e.g. vector fields) whose overall structure changes discontinuously with respect
to the initial data, in the appropriate topology of these function (infinite-dimensional) spaces. In
effect any conmcept of instability refers to a form of discontinuity; for instance, Liapunov
instability can be interpreted in this manner given the appropriate topologies.

"“*Mamely il all voters prefer outcome x o y, then so does the social rule,

*A voter is called decmive in Sen's framework if the outcome of the social rule agrees with
that of the voter when everyone ¢lse’s preference is opposed to that outcome.

*While majority rules, instead, clearly satisfy the decisive majority conditions.

*Since atherwise the representation of preferences by utilities R:P—U composed with the
convex addition of utility functions could yield a social aggregation rule of preferences that
respects unanimity and anonymity. The topology on smooth preferences used here is a C* sup
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This paper studies a different problem, concentrating instead on the topo-
logical properties of the Pareto and decisive majority conditions. The Pareto
condition is strictly stronger than the condition of respect of unanimity, and
the condition of anonymity is of a different nature than the decisive majority
condition. It should be noted that the lack of existence of global continuous
representations from preferences to utilities does not in itself resolve the
question of whether or not stable decisive majority rules exist. The fact that
a global continuous representation of preferences does not exist, does not
imply that decisive majorities are structurally unstable.

The results are obtained here by studying the topological degree of maps
induced by the social aggregation rule. The Pareto and decisive majority
conditions are proven to induce contradictory properties on the topological
degree of these maps.

The rest of this paper is organized as follows: section 2 contains notation
and definitions. In section 3 a particular example is constructed to show the
instability of decisive majority rules for a 2-dimensional choice space and 3
voters. Section 4 gives a proofl of the general theorem.

2. Notations and definitions

Let X be the choice space, such as a unit cube in R" denoted [", or the
positive orthant of R", R**. Since our framework is topological, it suffices to
consider any space which is diffeomorphic to [I".

A preference p on X is defined by giving for each choice x in X a preferred
direction, or equivalently, the normal to the indifference surface at x, a vector
denoted p{x). Following a usual definition in social choice theory [e.g.
Arrow (1953)] preferences are ordinal, and intensities of preferences are not
considered. Therefore we normalize the vector fields that give our preferences
to be of unit length, i, [|p(x)|]|=1 for all x. A preference is therefore a map
x—p(x) from choices x into the tangent space of X, T(X), such that for each
x, p(x) is in the tangent space of X at the choice x. Such a map is called a

topology which gives a desirable structure for the study of the problem, for instance makes the
space of smooth preference complete, which is of course an important feature when continuity
arguments are made. Any topology that defines proximity in a way that implies proximity of
gradients or equivalently of ‘indifference surfaces’, or demand functions, would also yield the
same results, A referee pointed out that for a special class of preferences, whose strict prefer-
ences have open graph and the sets of preferred points to a given choice is convex, the proof
given in this paper would also work when the space of preferences is given the closed convergence
topology, using a continuous selection for the correspondence mapping preferences into the
set of points preferred to a given choice (which is a lower semi-continuous correspondence with
this topology) instead of the map I” defined in this paper. The existence of such a continuous
selection follows from Hildenbrand {1974, corol. 3, p. 98). Note, however, that under the closed
converpence topology smooth preferences do not form a complete space and therefore limits of
smooth preferences may not be smooth., Therefore, when studying smooth preferences this
topology does not seem desirable.
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vector field on X. We topologize the spaces X and T(X) as usual, and we
assume that the preferences in the space P are defined by continuously
differentiable vector fields; we then endow the space of continuously differen-
tiable (bounded) vector fields V{X) with the C" topology.® Asin Debreu (1972)
and Chichilnisky (1976) we assume that preferences are given by locally
integrable vector fields, i.e., that p(x) is locally the gradient of a real-valued
utility function on X. The space P of all such locally integrable preferences is
characterized within V(X)) by the Frobenius integrability conditions.” The
Frobenius conditions and the normalization ||p(x)||=1 are both closed
conditions, therefore the space P endowed with the topology inherited from
V(X) is a complete space since it is a closed subspace of the space of vector
fields V(X ). The space V(X)) is infinite-dimensional and the space P contains
infinite-dimensional manifolds [see Chichilnisky (1976]].

We assume there are k voters (k>2). A profile is an ordered k-tuple of
preferences of the voters, say, (p,,....p)€P" the k-fold product of P. A
social aggregation rule is a map

¢ PE—P,

that maps a profile into a social preference in P.

¢ is said to be structurally stable or simply stable when it is a continuous
map. ¢ is said to satisfy a Pareto condition when the following is always
true: if for all voters, 1,... k, x is preferred to y (for instance if the utility
functions that represent p,,...p, give a higher value to x than to y), then
@(py,... ) prefers x to y. The decisive majority condition on ¢ is that at any
choice x whenever there is one homogeneous group of voters with profile

“We give P the C! topology to obtain a nice topological structurc on P; in effect any
topology on P that restricted to linear preferences coincides with the convergence of vectors in R*
will also give our result. See also footnote 5.

"The Frobenius integrability conditions are uwsually given by a set of partial differential
equations: they are necessary (but not sulficient) conditions for a vector ficld to be the gradient
of a reul valued function. For a discussion of these conditions see, for instance, Debreu (1972).

If gix) is the normalized vector giving at each point the direction orthogomal to the
indilference surface Hix) of a preference at x, then g can be thought of as a function from the
choice space X to the unit sphere of R™ [a continuously differentiable (C') function]. The
integrability problem is the existence of a utility function u from X 1o R, such that its derivative
D is everywhere a strictly positive multiple of gix), iz,

(*) Du=agiz), where A i& a positive real-valued function on X.

From (*), by equating the partial derivatives &,d,(u) and 7 (u), writing similar equalities for
pairs of indices (f, k) and (ki) and climinating £, a necessary condition for the existence of a

(€2 utility function that satisfies (*) on Xis
[**) Viijkh mld e —0ug))+a0F B~ T8 o)+ 8 eldlig;— 0 8:)=0.

Condition (**) is suflicient for integrability locally, i€, it implies at each pant x in X the
existence of 2 neighborhood ¥ of x and a function w that satisfies (*) on ¥
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(Pigs- - Pg) and pn=p for m=1,..,q, and another group with profile
(Pj1r-+ 2 Pja—q) With py=—p for I=1,...k—g, and one of the groups is a
majority (e.g. g>k—gq), then the outcome P{Piy.. . Pip pj,,.,..p_,{,_,,} agrees
with the majority (e.g. is §).

Notice that the decisive majority condition is strictly weaker than a
majority condition. Decisive majorities determine the outcome only in the
very particular cases in which the group of voters can be divided into two
subgroups which are each completely homogeneous, 1e. within each
subgroup everybody agrees with respect to all possible choices, and further-
more the two subgroups are opposed to each other. The decisive majority
condition therefore puts no restriction on the outcome in cases when the
voters have at least three different preferences, even when a majority of
them agrees on a choice x being preferable to a choice y. A social
aggregation rule is called a decisive majority rule when it satisfies both
Pareto and decisive majority conditions.

In the following we shall use the concept of topological degree of a map.
Before giving its formal definition, we shall describe intuitively the
topological degree in the particular case of a continuous map between two
circles, f:S'—=5§"

The topological degree of f denoted deg(f) can be thought of in this case
as the number of times that the image of S* under f wraps around §'. For
example, the composition of any function f that maps the circle once onto
the figure eight (on the right of fig. 1) with the map [T that projects the higure
eight an the circle, has degree 2. The composition map I1=f is topologically
equivalent to mapping the vector v in §' measured in radians to the vector
2v in S'. Under [T= f each point in the image §' is covered twice. A similar
map will be used in section 3 to study the case of three agents and a 2-

figure
eight

Pg

SI

Mof

Fig. 1
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dimensional choice space. The concept of degree for a map between circles
will suffice to prove this special case of the results.

The formal definition of degree of a map between spheres of any
dimension is as follows. Let S be the nth dimensional sphere in R"*', and
f:5"—5" a continuous map. Let H_(5") denote the nth dimensional singular
homology group of 5" with integer coefficients. For further topological
‘definitions, see for instance Spanier (1966). The degree of the map f, denoted
deg (), is defined as the unique integer such that

falz)=/(deg f )z,

where z is a generator of H,(5") and f* is the map induced by the function
[ at the nth homology level,

Sfa:H,(5")—H,(5%).

3. An example

Here we shall study a particular example of the theorem proven in the
next section: the case of decisive majority rules when there are three voters
and the choice space X is of dimension 2. We shall prove they are necessarily
unstable.

x)

Fig. 2. p(x) is the normal direction of the indifference surface of the preference p at x.

Given a choice x in X, say, the center of the circle in fig. 2, each preference
p on X, by definition, determines a unigue vector z in 5', given by the
intersection of the normal p(x) to the indifference surface of the preference at
x, with the circle §'.

When the space of preferences P is given the topology of C' uniform
convergence of vector fields on X, this correspondence p—z determines a
continuous map I' from the space of preferences to the circle, I':P—S'.
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Reciprocally, for each z in §'. we can define continuously a preference p inP
such that z is the intersection with S' of the vector p(x), the normal to its
indifference surface at the choice x. For instance, one can choose the linear
preference with all its indifference surfaces normal to p(x). This determines in
turn a map 4:S!—P, which is also continuous. The composition of these two
maps = 4, is a continuous map from §! to §', actually the identity map on
st .
It is easy to check that the properties of Pareto and decisive majorities of
the social aggregation rule ¢ : P*— P (if it exists) will be inherited by the map
W defined by the following diagram:

PApP

ary lLr
{Sl’}! r Si '

ie.  Wipypaps)=Tod(A(py).A(p2). A(pa)), for all (py,pa, pa)e(SY.

Therefore we shall now restrict ourselves to the study of such a map
that satisfies continuity, Pareto and decisive majority conditions. We shall
prove that such a map cannot exist. This in turn will imply that the
corresponding social aggregation rule ¢ :P*—P that would induce the map 1
cannot exist either, i.e., ¢ cannot be simultaneously continuous and a
decisive majority rule. Therefore any decisive majority rule will be necessarily
structurally unstable.

We now discuss the Pareto property of the aggregation rule. Because we
are concerned here with the case when there are two homogeneous groups of
voters, i.e., when the three voters have among them only two preferences, we
shall consider the case of two preferences.

Given two preferences p,,p, and a choice x in X, the Pareto property
implies that the social aggregation rule ¢ must have at the choice x an
indifference surface whose normal p(x) is contained in the cone determined
by the shaded area in fig. 3. This is because the Pareto condition implies that
any utility function u representing p must increase in the directions that both
u, and u, increase, where u, and u, are any utility representations of p, and
p,, respectively. Therefore the vector p(x) must be a convex combination of
p,{x) and p,(x) and this determines the set of directions in the shaded cone.
In particular, when p, (x)=p,(x), p(x) must be equal to p, (x).

We now examine geometrically the property of decisive majorities. We
assume that there are two homogeneous groups, €.g. that voters 1 and 2 have
the same preference denoted p;, and voter 3 has a different preference,
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denoted p,. Assume that p, is fixed, and that p; is allowed to vary over §!.
The outcome of the social rule will then determine a map from §' to S,
given by the normal at x of the social preference as p, varies over 5!, ie.,
¥(py, Py, . ):8' =8, The decisive majority condition implies that when p; is
the antipodal of p,, the outcome ¥(p,,py, p;) must be equal to p,.

5! 1(x)

pix}
2(x)

Fig. 3. A prometrical representation of the Pareto property for 2 homogeneous groups of 3
voters, on 3 I-dimensional choice space.

We shall now show that the Pareto and the decisive majority conditions
considered together imply that the image of §' under ¥(p,, p,, . ) is contained
i a strict subset of S'. This is because by the decisive majority condition,
when p, is the antipodal of p,, it follows that Wip,pLB)=p,;: il pis
contained instead in the complement of the set {P,}, ie, peS'—{§,}, then
by the Pareto property, y(p,,p,.p) must be also in S'—{p,}. Since y is
continuous, the image of Y(p,, p,,. ) must therefore be a strict subset of S, that
doesn’t contain 7,, the antipodal of p,.

Fig.4.Thf.'ﬁgureHmtsthtmﬂproﬁhnflwumalaﬁ:ﬂd!ML T are 2.
dimensicnal tori T= 5! x §'; T? represents the 3-dimensional torus 5'% 5 x 5. Given a fixed
r:lmiuxinl‘,lproﬁlnnfmytﬂpluurprd'mnmmber:prmm“npohninﬂ.
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We shall now study the implication of the above in terms of the degree of
the map W on certain submanifolds of the choice space. Let (S')* be denoted
T3, the 3-dimensional torus. If (§')? is the 2-dimensional torus T?
represented in fig. 4, then T* can be represented by the product of T? with
5'. As the 3-dimensional manifold T* cannot be represented in R?, fig. 4 is
only intended as a suggestive picture of it.

Let D be the diagonal of T, D={(p,,ps.p;)& T* such that p, =p,=p;}.

Consider the diagonal map d,

s14s

defined by d(p)=(p,p.p); d maps S' onto D. W-d is therefore a map from S
to §', and we can study its degree. By the Pareto property, W=d will have
degree 1, since Pareto implies that Wip,p,p)=p for all p in §', so that
wraps §' around S' exactly once. Let p, be a fixed point in 5'. We define I,
an inclusion map of §! into T2, by I,(p)=(p. Py Po)€ T°. Similarly define I,
and I3 by I;(p)=(psp.Po) and [;(p)=(po.po.p). respectively. The
composition = [, maps §' into §' as indicated in the diagram

T3=Slxslx31:}31

1 Wl
Sl

Therefore we can study the degree of oI, for i=1,2,3. Mow, since ¢
satisfies the Pareto and decisive majority conditions, as shown above,
Yo I,(S') is a strict subset of §'. Therefore the degree of <[, is zero for all i
since the image of - I, does not cover §'. Define now the map 7:5'—T? by

H{p)=1,3p} if pe[0. 2r/3],
I{p)=I1,(3p) il pe[2m/3,4n/3],

Fpy=1,(3p) iff pel[dn/3,2n].

I is a continuous map from §' to T*. It maps S' onto the three circles which
are crossed in the torus T2 of fig. 5, or, equivalently, into the double figure
eight on the right, with the points p, identified. Let IT,: T*—S', be the
projection of T? onto its ith coordinate. Then the composition of [ with each
11, (i=1,2,3) has degree 1, since it wraps around S' exactly once. Similarly,
the diagonal map d composed with each 17, has degree 1.

We now use the following:
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T3

Wl[[Sl}

Sl

Lemma 1. Let f and g be two continuous maps from §' to T>. Then f is a
continuous deformation of g if and only if the composition map I f has the
same degree as the composition map =g for i=1,2,3, where [1,:T*=S! is
the projection map that assigns to a point in T? its ith coordinate.

A more general version of this lemma will be proven in Lemma 2 of the
next section. From Lemma 1 and the fact that for all i=1,2,3, IL.=d and
Il;=I have the same degreeon S', it follows that the maps 4 and [ are
continuous deformations of each other.

Now, the first homotopy group of T2, IT 1(T%,po) can be intuitively
described as a group of classes of maps from S' to T3, each class consisting
of continuous maps which are all continuous deformations of each other.
Therefore, from Lemma 1, d and I are in the smae class within I7,(T?, p,);
this is indicated by

[d]=[1].
It follows therefore that the homotopy class of the composition map o d

is equal to the homotopy class of the composition map =] [see e.2. Spanier
(1966)], i.e.,

[¥ed]=[y-1].
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Since both yod and WoI map S' into §' it follows by the definition of
degree that

deg(yod)=deg(y=1I).

However, as we saw above, the Pareto and the decisive majority conditions
together imply that deg(y 1) is zero since the image of the map W restricted
to the set I(S') (ie., restricted to the union of the three circles of the top of
fig. 5) does not cover §', because it never assumes the value p, antipodal to
po. Therefore we have obtained a contradiction because as seen above
deg(yod)=1. Pareto and decision majority conditions cannot simultaneously
hold when the aggregation rule ¢, and therefore the map ¥, are continuous,
Therefore any decisive majority with three voters, in a 2-dimensional choice
space is necessarily structurally unstable. This completes our example.

4. Instability of decisive majority rules: A topological degree theorem

We now prove the main result on instability of decisive majority rules for
any finite number of voters, and any dimension n+ 1=2 of the choice space X.
The proof given in this section uses definitions and results of algebraic
topology; for further reference, see for instance Spanier (1966).

Theorem. Any decisive majority rule ¢:P*—P is unstable.

Proof. Let x be a choice in X, and let 5" be the unit sphere in R™*'. As
seen in section 3, given a chart for X at x, each preference p in P determines
uniguely a point z in 5% the intersection of the unit vector normal to the
indifference surface of p at x, pix), with §". This determines a map I' from
the space of preferences P into S, which is continuous by the choice of
topology in P. The map I” can be chosen to be continuous and onto 5". We
can also define a continuous map 4:5"—P, by giving for each z in 5" a linear
preference on X, with normal vector p(x), such that z=pix)n §". Therefore

we have
P
i \ (1)
I

s—t i

The map defined by making the diagram (1) commutative, ie., I'- 4, is the
identity on 5"
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Assume that a map ¢p=P*=P exists, satisfying the Pareto and decisive
majority conditions. Then we can define a map ¥ by the diagram

Pip
e | Ir (2)
(ST & g

Le., ¢l(zy,...,z)=T($d(A(z,),...,A(2,))) for all (zy,....z) in (8™ o is
continuous since it is the composition of continuous maps. One can check
that ¢ satisfies also the Pareto and decisive majority conditions on its
domain.

It is useful to visualize the conditions in geometrical terms. The Pareto
condition implies geometrically that the outcome vector is contained in a
cone generated by the individual normal vectors at choice x. In the
particular example illustrated in fig. 6 there is a 3-dimensional choice space
X and three voters. Fig. 7 is the case of two voters and a 3-dimensional
choice space.

Fig. & If the social rule is Pareto, the outcome coTresponding 1o py, py, p, must be conlained in
the shaded area of 5%,

Because of the previous construction, we can reduce the problem of non-
existence of the social aggregation rule ¢ to one of non-existence of the map
¥ on the product of spheres, satisfying the Pareto and decisive majority
conditions. We shall study this next.

In the following we examine the topological degree of the map ¥ when
restricted to the diagonal D of the space (5"},

ﬂ= {{pl" .-,P._]:p[E SE.Pr-=Pj, V i,j}.
First note that the Pareto condition on ¥ implies that when all vectors in

5" are the same, say all equal to p. then y(p,....p)=p.
Let d:5"—(S")* be defined by dip)=(p,...,p).
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Fig. 7. The Pareto condition with 2 voters in & 3-dimensional choice space. The voters’ normals
10 the indifference subspaces are p, and p,; the Pareto condition requires that the outcome has
a positive inner product with all vectors within the shaded arca.

It follows that the Pareto condition implies degl(p-d)=1
Let n,(S") be the nth homotopy group of 5"

Define the jth inclusion map I;:5"—+5"x...x 5" by

Jth plugs

Lip)=(po-.-- --FDTE: [

Let [1,:(5"f—S" be the projection map onto the jth coordinate. ie.
m;ipy...»p)=p; Then the composition [T, 1, is the identity map of 5

We shall now use the following lemma:

Lemma 2. Let «, Bell,((S")"). Then a=f if and only if M*a=M07H for j
=1.....k, where

Y ,((s™" ") —11,(5")
is the homomorphism induced by I1; at the homotopy level.

Proof. The group I1,((S")*) is isomorphic to @] 17,(S"); see Spanier (1966,
p. 418, B4). The projections [T, induce projections [T} at the group level, ie.,
1*- I} =id* where I} is the map induced at the homotopy level by the
inclusion map [;. Therefore, since an element in the group @t M,(5") is
identified by its projections, the result follows.
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From Lemma 2 it follows that the homotopy class of the diagonal map
d:§"—=8"x...x §"is the ‘sum’ of the homotopy class of the ; maps, namely,

[dl=[1,]+...+ (L] (3)
where [ ] denotes homotopy class in T,((S"F). It follows from {3) that

[b=d]=[p-1], (4)

where [ is a function J:5"—(5")* such that [[] is the element of IT,((5")*)
that represents } ;[1,]. Therefore, by (3) and (4),

deg (o d) =deg(y-I), \ (5)

since the degree of a map from S" to 5" is a homotopy invariant, and vields
an isomorphism [1,(5")= Z, where Z is the additive group of integers.

We now study the degree of I when y satisfies the Pareto and decisive
majority conditions. As seen in the example of section 3. these two
conditions when taken together, imply that the image of ¢ restricted to /(5"
will never assume the value j, antipodal to Py, for all j. This is proven as
follows. On the set [ jI8"), all voters except for the jth have the same
preference at the choice x, namely p,, while the jth preference may vary over
its whole domain, thus describing in terms of its preferred direction at x, a
sphere 5". By the decisive majorities condition, when the jth voter's preferred
direction is the antipodal of p, f,. the outcome

AR el
—ho
(v s Boaosciio o)

must be contained in the set S"—{f,}. Moreover, when the preferred
direction of the jth voter is in §"—{7,!, the Pareto condition implies that the
outcome must also be contained in S"—{p5,}. Therefore the image of
restricted on [;(5") iz a strict subset of 5" which does not contain Po. Since |
can be chosen so that

1(8" < 1,(5"), this implies deg(y-1)=0, (6)
i

From (5) and (6), and the fact that the Pareto condition implies instead
deg(y¥-d)=1, we obtain a contradiction. A continuous map ¥:5"x...x §"
—+5" satisfying both Pareto and decisive majority conditions cannot exist,
Therefore any decisive majority rule ¢ must necessarily be structurally
unstable. This completes the proof of the theorem.
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