Jowurnal of Mathematical Econemics & (19817 1 14, North-Holland Publishing Company

EXISTENCE OF OPTIMAL SAVINGS POLICIES WITH
IMPERFECT INFORMATION AND MNON-CONVEXITIES*

Grraciela CHICHILNISKEY
Liniversiry af Fasew, Colebester 04 3580, UK
Columbia University, New York, NY 10027, ['54

Recerved May 1977, final version received September 1974

Thiz paper studies the existence of optimal savings paths in models with imperfect information.
The returns on savings or on investment are ungertain and the models may have infinite
harizans, The results yicld cxistence when bath utilities and the distributions of the random
rates of return may vary through ume. The cases sludied bere also include nontrival non-
comvexitiss on hath the vtility functions (which are not necessarily bounded) and the feasible
sets of copsumption paths which may appear because of incomplele infecmalion, exlernalities or
increasing relurns. Laislence 18 also sstahlished when there s learming shout the walue that
determines  the distribution of returns, wpdated according to previcus cealizations. The
technigques  use non-linear  funclional  analysis. The  results  are obtwined by proving
compactness/continuity theorems of certain non-linear operaters on Hilbert spaves and other
lunution spaces, and are bazed on previous results i Chichilnisky (1977, 1981,

1. Introduction

Individual optimal behavior under uncertainty has been extensively studied
in the literature. However, a problem that remains to be examined is the
exlstence of optimal savings paths in models with imperfect information
on the uncertain returns on savings or investment, and with an infinite
time horizon, Even in the special cases where uncertamty is given by a
random rate of return with a known distnbution, identically distributed
through time, existence of paths that maximize the objective function is not
gasy to obtain. In Levhari-Srinivasan (1969, for cxample, the objective
function the individual maximizes is

F|:E ﬁ'u[f.'[£}1:|, i1

1 =10

where L is the expected value operator, the expectation being over the joint
distribution of the random variables ¢(r) denoting consumption at Ume r,
and fei0 1) is a discount Faetor. In this model the distribution of ¢t} is
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known and is constant through tme, This distribution 15 derived from that
of the random rate of returns § through the stochastic constraints

el = 1= denir1—ele ), i, g given, 2}

where ¢, denotes wealth at time r. A first problem n proving existence
of a solution is that the expression {1} is not necessarily well defined, The
sum  may not be convergent, and even If it 15 convergenl, the
max E[3 %, flulet))] may fail to exist.! These types of problems become
more complex in models where there is, in addition, imperfect information
about the distribution of the rate of returns of savings. In these cases, the
random  variable ©4t) has an unknown distribution, for instance. a
distribution depending on an unknown parameter &, and the distributions of
the random wvariables 8(t) and e(t) typically change through time. For
example, one can assume that the successive ohservations of Hr) arce
independent drawings, and that al each realization of the parameter 0{t) the
individual priot s transformed into a posterior, through a learning process
[or a Bayesian rule as in Scarl (1959)]. One case is thal of increasing
information, i.e. where the information about the wvalue of the unknown
parameter § converges to certainty, In other cases, the underlying parameter
is not constant, but itsell changing through time in accordance with some
stochastic process.”

In this note we generalize and exlend existing results on optimal savings
under uncerlainty to the more general models just discussed. We build up a
technique that allows us to prove existence of optimal savings paths in
models where the distribution of the random variables changes through time,
in a lushion thal may depend on the previous realizations of these random
variables (e.g. when there s learning) and under quite general specifications
of utilities und technologies, The plan of this paper is to build from special
cuses Lo more general ones — indeed, the general results were motivated by
special ones.

The models we consider here in the more general cuscs, and the results
obtained, gencralize in particular those of Levhari-Srinivasan (1969) and
Mirlees (1965), They include cases with imperfect information on returns and
lime dependent utilities. In addition, existence is also proven with non-trivial
non-convexities on both utiliies and feasible sets of consumption paths, and
when utilities are not necessarily hounded. Such non-convexities appear
lypically in these types of models associated with incomplete information or
increasing relurns.

"Ciiven the fact that (1) mav not be well defined, Levhari and Srinivasan use an overlaking
criterion instead of the cne Tormulated initally ar least in some parts of their paper. In our case
we study conditions under which (1) is well defined, and prove existence of max E[} Huleirii]

as a special case of the results,
Far inslance, a randam walk as diseussed in stock market exchange models.
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In section 2, we consider cases where hoth the utilities and the
distributions of the random rates of return may vary through time. We give
conditions for continuity and boundedness of the relevant operators in
Lemmas 1 and 2.

In section 3, more complex cases of imperfect information are considered:
in Theorem 3 the distribution function of the random returns G{t) is assumed
o be time-dependent and wncertain; in Theorem 4 there is also learning
aboul the value of a parameter, denoted {f{1), that determines the distribution
of Mr). At each time period the distribution of the random variable s
updated according to the previous realizations ol that variable. ie.

i+ 1=L{0e) 06,0),

where L is a learning function. We alse consider cases where the learning
about the distribution of #ir) 15 allowed to secumulale according 1o all
previous realizations of the variable, ie.,

Fit+L=Lid{r 001 . 8th1)

Further cascs where information converges Lo cerlamly are considered, Le.,
when Git) @ as 17, where @t} 1s the value of the parameter determining
the distribution of #{t]. In scction 3, the models allow for production, ie., the
constraint {2} 15 replaced by the more general constraing

et L= F{f{t irh—ele) t], (3)

where is a production function.” Theorems 3 and 4 in section 3 prove the
existence of optimal savmgs paths under imperfect information about Qi)
and learning, as discussed above, including cases where there are non-trivial
non-convexities both on the utilities and on the technology (the function ),
and utilities are nol necessarily bounded.

The proofs vse techniques of non-linear functional analysis i certain
Hilbert spaces. Related methods were used in Chichilnisky (1977, 1981) and
Chichilnisky Kalman {1980) for the study of elliciency and optimality
growth moedels with an infinite horizon, However, in this case extension of
the results of those papers is needed: [or instance, the complexilies thal
appear due W the underlying uncertainly and/or imperfect information
considered here require us to work on spaces of infinite sequences ol function
spaces. The more technical aspects of the results oblained here are contained
in the appendix.

Y13} containg (2) as 4 special case.
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2. A special case of the model and some results

Here the individual policy is 1o maximize a discounted sum of time-
dependent utilities

FLL Brulel(r) fJ}. fei0,1), i4)

=1l
where F is the expected value operator, subject to the stochastic constraints
it + V=l y—cit)) 81t #i0) given, 50

where (1320, ) is 4 random variable with a ume-dependent density given
by I{t), representing returns on savings. The non-negativity constraints,

otz eit)z=0, for all ¢, 6]

ure also reguired.

We assume Fit) 15 a continuous bounded function for each 1. and that
w0, 71=0 for all ¢. The following results generalize the results of Levhari-
Srinivasan (1969) with respect 1o the boundedness of Lhe expectation
operator (4], also extending them to more general models where utilities and
distributions of returns on savings are not nccessarily stationary through
time,

We first need some definifions and assumptions. Let wix t) represent
instantaneous utility at time (,u:R™ xR~ +R ", and let (1) be independently
distributed throug time. Assume that wix.i) satisfies Caratheodory
conditioms®* and that, for all «,

Qe fleidii), =1 ¢ pe (0010, 17)

where E(#(r).r) 15 the expected value of #(r) with respect to its density Fir);
or, i the special case that F(i)=F, ie. when the distribution of 0 is
stationary, )

0= JIEA 1. 15)

(This latter condition is also assumed by Levhari-Srinivasan.)
Let H, be the Hilbert space of paths defined as the space ol all sequences
:-;Pr;'r—fl. } h with
D
Y Fle? <= (9
t=1
e RY e BT KT i said o satisty Carathecdory conditions iF ulx, 11 is continuous with respect
tor x for almost all ¢ in BY, and measurable wath respect 1o ¢ Tor all values of x 1 B7,

While we assume that consumplion is one-dimensional for simplicity of the exposition, wll the
results given here are valid for w:f*' = B =R, an s-dimensional consumplion veslor.
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The square root of (9) defines the || -||, norm of e}, denoted ||le,}] 5 Hy i
the Hilbert space [, with a bounded measure on [0, =) given by the den«;ny
function® fir)=/ te[0, o). For any initial wealth ey a consumption
path {eit)y 1=0.1,..., 15 called feasible il there exists a sequence Toait ),
t=0,1,..., @i{0)=wmy, such that {eit)} and {wir)} satisfy (3] and [(6) above.
Similarly, one defines feasible wealth paths {wir):. The [ollowing lemma is
used i the proof of Lemma 2 and in the existence of the next section:

Lemma 1. For any initial wealth vy, and feasible consumption path ¢(t} under
conditions (T) or (8), the set of all sequences of expected values of consumption
Leicit), e}, is contained in Hy. Furthermore, the operator Yill;—R odefined
by
L)
YiE(cit) )= fulEicit) i

(=0
is || @ continuous as o function af the variable {Eicit),t)) i and only if the
utility u satisfies the following condition,

{C.1) el ) =alt)+ x|,

where b iz a positive constant, a{t)z0, and Y7, Fait)< o " Hence, in
particular, when (C.1) is satisfied, the sum Y " ﬁ'u[ﬂ (cirho)) iz hounded,

r—1

Proof. Let wit)=w, [] #is)k
=0

Any feasible {oft)] satishes wmit) = Sw(t) for all t. Note that, since mit)=elt)
=1, by assumption (6],

Elelt), r)1=Fimit) 1)

=L

= Euwy [ (H(s).5)
%= 0

{10)

-1

—y [ [HishdF(x)

=0

Wy (
f.lf

*A density [uncticn is a positive real valued [uncticn on the set of inlegers [0 0] which iz
used as a measure to define the summability, or integrabhity of real valued fanctions on [0, =]
in ;. as in (91 above,

*Note that condition (C.1) does not mply the existence of & function L'ix) thar provides a
uniform hound (for all £} to the wix, ', since the functions al#) may inciease without bosund
the space H, as ¢ goes to infinity.

e,

||.""-.
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since the #it)s are independently distributed through tme and in view of (7)

above. In particular, if 0(r) is identically distributed through time, then
0= SE8 <1 suffices to show that

l-' FE{cit) iy= o,
(=1
and also

iE
Y FLE(cit) )] = =.

P
By (10, the sequence {Eicit),t)}, =y, 15 in Hy, for all leasible paths {e{t)],

and for any imtial oy, We now study the continuity of ¥
Denole (Eicit) i)} by {e} or e, and let d={d{t)} ={F'e(i}}. Then the map

YiH,~R",
given by

e YEC( =T PulElclh ).

t=4

is | +||s continuous if and only if the map Z, given by

a5 (B},
is continuous [tom 1L,[0, 20 to | [0, = )" since

Iyie }}L, Yo

il and only il {f'y(t)—{A%" 1)} in 1. By Krasnosel'skii (1964, theorems 2.1,
2.3, pp. 22 28, and remarks, p. 28}, & necessary and sufficient condition for 7
to be continuous from [ to 1) is that

|BulB ()| = g lt) +o|d?,

where girje!,, a(t)=0 for all r, and 2 15 a positive constanl. This is
eguivalent to

2
=

lute(t))|Zalt)+ble

M [0 20 ) 35 the Bunach space of all sequences Jaie)} with ¥ . |ait)| < oo, and [0, 2 ) is the
Hilbert space of all sequences {a(f)} with Er.:,:,laiﬂiz '
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where a(r)=0 [or every (, ¥ 2, Fali)=<o and h=0. This completes the
prool.

The next application of Lemma 1 generalizes the results of Levhuari-
Srinivasan with respect Lo the boundedness of the expectation operator in
{4); here the utilitics are not necessarily bounded, and both the utilities and
the distributions of the random variables may change through time,

Lemma 2. If w is strictly concave, then under condition (C.1) of Lemma I,

I

i Iﬁ’u{{.‘[zj.z}j|
i=D

is always hounded, for any feasible consumprion path {elt)} with initial
condition wy in the above model, where utilities and the distribution of the
random rate of return may vary through time, Furthermaore,

supﬁ[ ¥ ,ﬁ”u[r[.{j,nJ
R T

ix also hounded.

Proaf.  This follows from an application of Lemma 1. Simce w is strictly
concave, by Jensen’s mequality and the results of Lemma 1,

1=10

F{E {f'u[a‘{r],r]Ji Y fulEicit), ).

which 15 bounded.® From condition {6} and Lemma 1, all feasible sequences
[E{c(t). )} are uniformly bounded abowve. Lemma 2 of Chichilnisky (1977)
implies that these feasible sequences form a pre-compact set in Hy. The
continuity of ¥, proven in Lemma 1, completes the proof,

3. The model and existence of solutions

We now turn to the more general model and the existence rosulls. The
individual's policy is Lo maximize

Wiclt=E l Flaleit), 1) L B0y, (11}
By i

*Mote that even if all afcfi), 1) were uniformly bounded Lemma 2 is not valid when the o's ane
ot concave, since Jensen's ineguality does not apply, Theorem 3, helow, extends Lemma 2 o
cases where xis nol concive.
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subject to the stochastic constraints®
e+ 1= i) ity clrho) (12}

where (Ht) is a random variable with a distribution identified by a parameter
fAit), f is a continuous function representing the technology and the non-
negative constraints,

wit)Zclt)z0,  w, given, (13)

are satisfied.

In general, Jit) 15 a random variable whose distribution changes through
time. A special case is where there is learning aboul the value of the
parameter A{r) which determines the distribution of #it). This can be
formalized by the constraint

Air+ 11=Lid{, 006,10, : (14

ic. #ir 1 1) depends on Jit) and the realized value of the parameter at time
i, ) In addition, if for all ¢, #(r) is assumed to have an unknown but lixed
distribution identified by a parameter f, information is increasing, by
delinition, when

Jity=d as 1o, (15)

In these latter cases, W of (11) becomes a conditional expectation operatar,

P|:l_ uif.'(r}._ﬂ|lq.~__:', 164}

P=10

where , is the prior value of the parameter al time (), and where the
gxpectation is laken with respect to the joint distribution of the random
variables ¢(r), these distributions being induced by those of the random
variables ir) through (12). The distributions of the #(r s satisty the updating
eq. (14).

We first prove existence of an optimal consumption policy in cases where
the distribution of the returns on savings and atibties are not stationary (i.e.,
thevy are Ume-dependent), bul there is no learning, In these cases, the
distributions of the random wvariables at time ¢ are assumed o be
independent of previous realizalions of the variables, These results are
comtained in Theorem 3. Theorem 4 prowves existence when the changing
distributions are due Lo change in information, Tor instance, through a
learning process such as that formalized by constraints (14) and {15).

“A spocial case of (12105 wii+ L) =9000win) -~ cin.
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We first need some more definitions. Tet g:RT—R be a measurable
function. Then the || -|'; norm is defined by

el = f e #[gt)| d.

The space of all such functions g, for which the norm ||-||} is bounded, is
denoted Hj. It is a Banach space isomorphic to L,. with the finite measure
induced by the density function e ™ on [0, a:).

Lot £ denote the space ol all sequences of finctions [¢le)), -, . where
Pitye i for all 1, and satisfying

i)y 5= ¥ g()|din)] [} <.
(= u

(.|| -|\fy is a Hilbert space isomorphic to the space of maps from the set of
positive integers N to Hj with a finite I; norm, with respect to a [inite
measure on the sel of integers given by the density function §, Let £ be the
space of all maps from N to H},._ or sequences (¢t =y, .., cach map gWl)
in H;, satislying

|@||% = sup if|@i)||ih==.
rell, o

€} is a Banach space of infinite sequences of functions in Hj. Note that
Q=1 The norm ||-|I7 on @ is also used in the following as an auxiliary
topology in the proof of existence,

Since the distributions of the random vanables change through time. the
consumplion policies (i, the functions that determine how much to
consume as a function of wealth) are alse time-dependent. In Levhari
Srinivasan (1969), for example, by contrasl, the consumption policies are
independent of time, since all the random variables are identically distributed
through time, Denote by o the set of all consumption pelicies ¢
1t} — .. satisfying (12) and {13). We shall assume thal, for each ¢
it is a measurable function. Then, by Lemma 1, dit)= Hl.ﬂ for all . We thus
can assume that i< . Note that the set o is closed coordinate-wise, i.e., for
all o if g*(r)—ah" (2, then q.':”l!‘JEH; qatishics the conditions (12) and (13) that
define the set . By definition of the topology of v {us a subset of I}, this
implies in turn that ¢ is closed as a subset of I', since the coordinate-wise
topology on ¢ is weaker than the ||-| [ norm: see e.g. Dunford and Schwartz
(1958).

We now assume that the utilities wic, r) are mereasing in ¢ and the density
functions F{t) satisfy Fit)=e "N(r), where Nitlc R, for each 1. Note that
the choice of the parameter f is Nexible within (0, 1), We shall further assume
the following asymptotic behavior of the expectations and consumption
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policies:
(C.2) Eluigio, )b =air) + b(||d] 17, for cach r,

where

Y Falt)=m, alt)y=0 foralle, and beR™,
[ 1]

We can now prove:

Theorem 3. Ler w sarisfy the conditions of femma T in section 2, w nol
necessarily concave. For gv={gt)},_q . a consumption policy in b, It

Wi 'r:E[,E Fuldiel),t @ ,

z0

where ulait) t)) represents u(giteolt) t)), and the expectation is taken
with respect to the join distribution of the random variables w(r), identified by
the seguence of parameters'™ 1), o, . Assume that condition (C.2] is
satisfied for the expectations and the consumption policies. Then Wois a H -|&
continuous map from § to RY, and there exisis a sequence of corsumptlion
polivies ¥ = (™ (1), that maximizes Wid) subject to the constraints
(12) and (13). No concavity assumptions on the technology fin (12) or
boundedness of the utility u are reguired.’

Proof,  First note that, since g e T, assumplion {C.2) implies that the sum

E P E{uighienit), t]))
1=

s a well defined positive real valved function for all feasible consumption
policies ¢ in ., Thus, in particular, the cxpectalion operalor commules with
surmmation, Le.

Wid)= Y FEMd).n)).

=10

Mext, note that the function ¥y = R )—=R", given by Vig, td=E{ulgz. t11)

sutisfics the Caratheodory conditions: ¥ s continuous with respect o o,

and measurable with respect to f for all values of ¢, by the choice of
1O7f the informaticn converges Lo certainty, Jie) =0 as 10—,

U houndedness of the utilities o ar cach time ¢ s also not regquired, ie., for sach & aie, 1) i nol
necessarily a honnded function of ¢
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topologies and the properties of u (see Lemuma 5 in the appendix). Hence the
map Wy, defined by
W)= FEw it eith i)} -q.

is continuous from y o [, if condition (C.2) is satisfied {sec Lemma 5). But
Wi —1, 15 continuous i and only if Wig—R is continuous; thus (C.2)
implies that W is continuous, Finally, note that by the constraint {13} and
the fact that, as noted in Lemma 1, m{)Zwif), the set of feasible
consumption policies ¥ is ||-||% bounded in Q=1 by Lemma 6 in the
appendix, then, the set of feasible consumption policics i is actually | -||%,
compact. Hence there is a solution to the maximization problem. This
completes the proof

We now turn 1o the case where the distribution of the random variables s
updated at each time period according to the realizations of the variable up
to that period. Accordingly, (14) can be rewritten as

Air+ 1 =LAT0L 000, . e, . (14

Hence, an optimal policy in this case is a sequence of consumplion policy
functions {@{t)},—, . . where, for each r, the policy @(t) depends on the past
realizations of the variable, {#(1),...,8{r—1)}. These, in turn, through the
learning process (14) [or (14')] determine, given #(0). the value of the
parameter #(t) which identifies the (posterior) distribution with respect to
which the expectation Elulcdioof(t), 1)) is computed at time ¢ Thus, in this
case, 4 consumption policy can be thought of as a map from the space of
sequences of realizations of the random wvariables through time, inte a
sequence of consumption policy functions of the type of those of Theorem 3.
Thus, a sirategy of consumption is now assumed to be an element of 7™, e,
a function £:H,—I assigning to each sequence {0]={0{1),.... 8} ...} a
sequence {(l),....op(th ...} each i) satisfying (13 where or) actually
depends only on the subsequence {310, ..., 0 —1).

An optimal strategy of consumption i3 a function &* such thal, for any
sequence {71, £* maximizes the value of

W, {i]zﬁ[ E Brulé (B wi) )] I%J~

=

where wi{& (0 ewir) ) represents the wtility of the consumption iz i) )
derived from wealth wir), and the consumption policy ¢ where ¢ =2Z(l), ie.,
Ih(t)t = 1E£(#)(t)}. The expectation operator conditional on #;, =#(0) is taken
with respect to the joint distribution of the random variables through time as
given by the updating time dependent process described above. [It s
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assumed thal the parameters ) provide a sufficient statistic of the
distribution of Mt)] A feasible strategy of consumption is an clement of the
set ', ic, a strategy of consumption such that, for each realization of the
random variables {8}, it gives a feasible consumption policy wid)yer. Let the
space I be given the product topology, ie. the topology of coordinate
convergence. We assume the following asymptotic behavior of the
expectations, utilities, and learning process:

FEw(E (et )t )|, Salr) + b

S| [ ¥. (C.3)

aft)z0 Torally 3 Faftl<o, bheR'

X
In view of Theorem 3 we can now prove;

Theorem 4. Assume that, for each feasible strategy of consumption £ in g,
condition (C3) en the expecialions, the utilities and the learning process of
L) is sarisfied at each time t. for each sequence |8 of realizations of the
random variables. Also. assume that the conditions on feasible consumption
policies and utilities of Theorem 3 are satisfied. No concacity or houndedness
af the utilities u or concavity of the technology [ in (12) is required. Then the
map W™ R defined by

W, i;’]:!i[ l Puic(@)ewie)i)) ﬂfo].

=N

s owell defined and continuous, and there exists an eptimal strategy of
consumption, Le. a 2* ey which maximizes W, subject to constraints (12),
(L3 and (147

Progf. In view ol the choice of topology for W', W, is conlinuous on
ey o 1Y if and only if for each {0} e H . the map

Wy (£(0)) 1~ R

15 continuous, since W), will be continuous if and only il it is continuous
coordinate-wise [see Dunford-Schwarty (1958)], But W, (Z(f1))= W (), where
W is the map defined in Theorem 3 and ¢ =210), 1e. p=gpir)=I(0Mi
Henee (C.3)=W is continuous by Theorem 3, Thus, (C.3)=W, 1s continuous
coordinate-wise, and thus W) is continuous. Nexl nole that the assumptions
on the utilities and the consumplion policies of Theorem 3 imply that W is
||| compact, Therefore, by the assumptions of Theorem 3, ¥ is compact
coordinate-wise. This implies, by Tychonoll™s theorem, that % is compact in
the product topology, which completes the proof,
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Appendix
In this appendix we prove two technical results used in the paper.

Lemma 5. Under the conditions of Theorem 3, if Vil < R) +R™ is given hy
Vi t)=Euigpica), i) =0, ¢h=1{d(r)}, where h(ea) represents @it ea(t]) and
where the expected value is taken with respect to the distribution of the
random variahle @ ar time t, then V is cortinuous as a function of @iz).
Furthermore, the map W defined by Wig)={FEuldit)wlt) N} _o, 18
continuous from W to [,

Proof, Let ¢*(t)—a"(¢) in |||/}, Without loss of generality we can assume
#%11=0. Then. by the assumptions of w, il F{t] represents the densily
[unction of o at time 1,

™ (0 )(eo(t), 011 = [ wih™(t }eah 0 W (rHes
5 ;
<= || KW (des = =, (A1)
u

where

Kit)=supul(gii) )= uieir)r) by (13}]

=ulet), L)

where (1) 15 defined in the proof of Lemma 1.
Now, since $5(()=0in || ||}, it Tollows by the definition of |||/} that

Fe Mg itielt), 1)) dm—0 as 2o, (A.2)
1]

Hence, by the assumptions on Fit), this implies that
_\: e (e (e D) F (2 ey des—0 as oo (A3
I

Hence, by (A1) (A2) and (A3),
E{uld® (T} enir)r)))—0 as  z—oc,

Since w(0, t)=0, this implics continuity of F with respect to ¢, which shows
that ¥ satisfies indeed the Caratheodory conditions as needed in the proof of
Theorem 3.
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Nexl we show that (C.2) implies W is continuous from o to 1. By
condition (C.2), W maps ¢ into 1. By theorem 2.1 of Krasnoselskii (1964, p.
22) the operator W is continuous, since it is an integral operator of the form
required.

Lemma 6. Let W be o subset of the space T with the aorm || : |£ If o is
closed coordinate-wise and condition (13) of section 3 is savisfied [ie., ()
Zrfealt 120 i) =07, then i is || ”.{1 campect,

Proaf. First note that if ¢ is closed coordinate-wise, then it is || ”‘— closed,
smee the coordinate-wise convergence topology is weaker than the |||}
norm, Next, note that conditon {13) implies that. for all ¢, if $={dit)], the
function oit)ixieH} is bounded above in the norm. since ¢if)ix)=x,
ag. xe |0, ) Hence, for any feasible v im b,

sup | pto)||s= [ e M xdx, . {A4)
1]

t=1L10,..

where the right-hand side 15 a fixed positive real, say N. Hence all the
elements of 4 arc bounded in the || ||} norm as defined in section 3. Thus,
for any initial wealth @, the results of Temma 2 of Chichilnisky (1977)
apply, and hence W is || - ||} compact,
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