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. INTRODUCTION

This paper is concerned with the existence and characterization of optimal growth paths in
continuous time infinite horizon problems, and brings to bear on these issues mathematical
technigues presented by the author in Chichilnisky (1977). These techniques, non-linear
functional analysis in Hilbert (weighted L; and Sobolev) spaces, permit generalization,
clarification and simplification of existing results, In particular, the following points are of
importance:

{1} As Hilbert spaces are self-dual, continuous linear functionals on the commodity
space are elements of the space, and thus have a totally natural interpretation as prices. We
therefore obtain that commodity and price paths are in the same spaces, a useful property
to prove existence in general equilibrium models. A failure to meet this condition has led
to earlier work on characterization being troubled by the problem that supporting linear
functionals are not always interpretable as prices, so that one cannot always give a price
characterization of optimal and efficient paths. In the present framework this problem
does not arise.

(i1) A natural way to pose the problem of finding an optimal path is as one of
maximizing a2 continuous function on a compact set. A major advantage of the techniques
we use here is demonstrated by the fact that we are actually able to follow this approach.

(i1} Because of (ii), it is possible to establish the existence of an optimal path without
the use of any convexity assumptions on either the technology or the preferences. Thisisa
major relaxation of earlier conditions, and enables existence results to be applied to
models with increasing returns in production, non-convex preferences and endogenous
population. For instance, in Lane (1977) both the feasible net production set and the
preference ordering are in general non-convex due to the endogenous response of
population growth to income. In Ryder and Heal (1973} and Wan (1970} non-convexities
appear as well as in environmental and biclogical problems discussed for example in Clark
(1976). Inthis latter case the logistic growth functions of biological populations introduces
non-convexities in a natural way.

{iv) It can be shown that the prices that arise within this framework provide a
well-defined present value for every [easible program. This makes it possible to provide a
full characterization of optimal and efficient paths in terms of profit maximization without
any reference to transversality conditions. This characterization is thus analogous to that
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used in atemporal or finite honzon problems. Such a characterization can be given
globally in the convex case, and locally in the non-convex case.

Earlier work in this ficld (Bewley (1972), Lane (1975), Majumdar (1975}, and Ryder
and Heal (1973)) attempted extensions of results on existence and characterization of
optimal paths of the neoclassical growth models. However, economic theory has not dealt
rigorously so far with such problems in continuous time optimal growth models with non-
trivial non-convexities appearing simultancously on the technological side and on the side
of the social welfare function. For example, existing sufficient conditions for existence in
continuous time growth models that are based on optimal control theory require convexity
assuptions on both the technology and the utilities; in addition, in those works, external
conditions on the limiting behaviour of the optimal path {called transversality conditions)
need to be assumed to obtain characterizations.

An extension of these earlier works to continuous time models does not seem
possible. For instance, in discrete time models where the feasible production set is
described by a production function f, the continuity of the function f along with norm
boundedness of consumption and capital paths guarantees that the set of feasible
consumption programs Y is closed in the topology of coordinate-wise convergence, and
henee, closed in the Mackey topology miif., [1), see Majumdar {1973). Along with other
conditions on the technology, Y is also shown to be compact. But these arguments are no
longer valid in continuous time models, The topological properties of the production set
would then depend on how each instant's feasible production sets are related to the
measurable structure of the space (L.). The consensus in the previous literature, as stated
in Bewley (1972, p. 518) was that, “No general statements about this relationship seem
possible”. However, by the use of L; norms instead of coordinate-wise or Mackey
topologies on L. and by further arguments, here we can actually show in a continucus
time case, compactness of the feasible consumption set in & norm in which additive
time dependent utilities are also shown to be continuous, see Lemmas 1 and 2, and
Proposition 1.'

2. EXISTENCE AND CHARACTERIZATION OF OPTIMAL
PATHS WITH NON-CONVEXITIES

We first discuss the problem and the methodology used. One way of viewing the problem
of existence of a solution in continuous time, infinite horizon models is to find adequate
economic conditions under which the feasible production set is compact while, at the same
time, the welfare functional to be maximized is continuous, Both these facts, compactness
and continuity, must be given in the same topology. Under convexity assumptions, these
problems are relatively simple, since compactness and continuity are much easier to obtain
in these cases; with non-convexities the problem becomes more com plex.” See for instance
the results and discussions in Chichilnisky and Kalman {1980).

An additional problem arises in these models when one studies the characterization of
solutions, from the fact that prices are dual elements of the consumption path space and
the duality depends on the topology chosen. For example, dual elements of paths in L.
(with the sup norm) may defy economic interpretations: this produces so called
“paradoxes of infinity”, see for instance Chichilnisky and Kalman (1980},

The approach we take here contrasts with others in the literature in that we show that
under reasonable economic assumptions Hilbert space structures can be given to both the
space of feasible consumption paths and the space of capital accumulation paths The
optimal paths proven to be in such spaces, are therefore proven to have an asymptotic
behaviour that eliminates in particular the need for any transversality conditions. The
space of consumption paths is thus given the structure of a weiglhted L. space, where the
weight is related to the discount factor in intertemporal welfare.” Since Hilbert spaces are
self-dual, this has the effect that prices are both representable by paths, and also well define



CHICHILNISKY NON-CONVEXITIES 53

a discounted present value for all paths in the space. This eliminates the problems of
economic interpretation of prices which are not represented by functions. In addition, for
characterization of optimal solutions in non-convex cases, one can use gradient methods
which are only available in Hilbert spaces. For this, among other reasons, the spaces used
here seem natural for spaces of consumption paths,

Previous work in the area has biased the choice of consumption path spaces in favour
of L, the space of Lebesgue measurable (a.e.) bounded functions with the sup norm. This
choice has certain disadvantages produced by the lack of reflexivity of L. (Bewley (1972)).
However, L. spaces were chosen because certain difficulties of working on L, (or other
L,) spaces had not been overcome before. For example, since the topology of L: is weaker
than the sup norm of L., it is more difficult to exhibit conditions on the time dependent
welfare function () which yield appropriate continuity of the additive social welfare W to
be maximized, because in general W is a nonlinear functional. Another major difficulty in
the use of L, spaces arises from the fact that in economic theory the admissible sets of paths
on which the optimization is performed are usually assumed to be contained in positive
cones, for instance, admissible consumption or capital paths are pusitiw valued through
time. However, the natural positive cones Bf L (or any L, p < a0) spaces (i.e. the cone of
positive functions), have an empty interior.* This produces difficulties in the application of
standard tools (Hahn-Banach Theorem) used to prove existence of competitive prices for
optimal or efficient programs. However, when the objective function being maximized is
proven to be continuous in an L, topology as we do here, these difficulties can be
overcome. Thus, the question of existence of characterizing prices for the optimal solution
is also related to the existence of appropriate continuous functions. Because of this, in
Proposition 1 continuity of the welfare function is studied, and a complete characterization
is given of continuous discounted additive time dependent utilities, (not necessarily
concave or quasi concave ) defined on an L. space of consumption paths. Together with the
compactness proofs of Lemmas 1 and 2, this is used to prove existence of a solution in a
Hilbert space in Theorem 1.

Theorem 2 gives a global characterization of optimal paths by competitive prices for
convex cases; its Corollary 1 completely characterizes efficient paths by competitive prices,
Proposition 2 gives a local characterization for non-convex cases.

We now give a statement of the problem. From here on lower case letters shall
represent per capita quantities, for instance, k; = Kii/ L, ¢; = C/L, etc.; the dependence of
¢i kji, €tc. on time will not always be indicated to simplify notation. In per capita form the
madel becomes

max Wic ..., ta), i
where o
Wity ...,.cnl= L e Muleddr), . .., calt), )dt,
and & {0, a2), The real valued Lebesgue measurable functions ¢, ..., ¢, on which the
maximization is performed are restricted to a region where the follnwmg ccndltmns {a)and
(b) are satisfied, for some functions &, and /; (i,7=1,.... n).”
(a) e+ ki =F'(kiy. . . ka)—Bkis i=1,...,nBeR+
and
(b) Tieika=ks i=l,....m
E:I-l =1
k0 = ks i=1l,...,n

The ¢;'s, k;;'s, and I's which represent per capita consumption, capital stocks and labour
paths are all assumed to be positive real valued functions on [0, a¢). Each k; is absolutely
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continuous and k; denotes its a.e. derivative.® The k;'s represent per capita rates of change
of capital stocks or investment flows, and are not necessarily non negative real valued
functions on [0, 0}, We now define the spaces of consumption and capital paths, and other
auxiliary spaces that will be useful later.

In the following we shall essentially work with three types of spaces. L., a space of
measurable a.e. bounded functions, a Hilbert space denoted H) of square integrable
functions with a measure given by the “‘discount factor” ¢~*' and another Hilbert space
denoted H! of functions f in HY such that their derivatives Df are also in H'. Formally,
let L.[0, oo} be the space of essentially bounded, real valued functions on [0, o), with the
sup norm denoted ||+ <. If f and g are in L.[0, «0) define the inner product:

o

(fs &8 -—"J e “flf)- glr)dr.

0
This inner product represents the discounted present value (at time 0) of the consumption
plan f in price system g, with discount factor A. The completion of L..[0, c0) under the
topology induced by the norm of this inner product ||f|, =/, ?isan L, space of square
integrable functions on [0, «¢) with density given by e ™Mie lf | f Lebesgue measurable,
[ f2(r)e *dr < +oo}. This will be the space of consumption paths. Since L, spaces are self
dual, any price path g(¢) (i.e. any continuous linear function on consumption paths} is in
the same L. space, and, furthermore, the inner product given by (f gl =
[y e "f(e) - gle)dt is always well defined for any consumption path f(r).

The L; consumption path space is denoted H3, and its Lanorm | - ||, to bring attention
to the parameter A in its definition. As the definition indicates, any path in H, can be
approximated by a sequence of L. functions; this is a useful fact as this latter space is
frequently used in the economic literature, e.g. Bewley (1972) and Majumdar (1975). The
relation between A and the discount factor & of the function W of problem (P) is studied in
Proposition 1 below, In view of this proposition, although all spaces H', are equivalent £,
spaces for any A, only certain values of A are adequate for this model. Similarly, one
defines another space H x cunsistin%, as we discuss below, of continuous functions in HY
whose time derivatives are also in H, ; this will be the space of capital accumulation paths.

Formally, let f and g be €}, functions (continuously differentiable and bounded) and
define the inner product (£, g)} by

o

mmk{ e MYl DD gl0)ds,

Q

(f gha=(figh +(f

and the norm || | by ||f]lx = ((f, f1:)""*. The completion of C}, under the norm || - ||} is
denoted H |, and it is a self dual space, a Hilbert space which is usually called a Soboley
space (see, for instance, Nirenberg (1974) and Sobolev (1963)). By a special case of
Sobolev theorem M, [0}, 00) = C[0, «), i.e. the functions in H; are absolutely continuous.
Self duality and the fact that its elements are absolutely continuous are two very desirable
features of H,. It can be shown that H| can be also defined as

H?} ={f|f is absolutely continuous, Df e H}},

using the Cauchy—Schwariz inequality. This definition is equivalent to the one above, and
has the advantage that the only restrictions imposed by H ! bear on the square integrability
of f and of Df on [0, o) with density ¢ *'.° The previous definition helps instead to show
that any functions in H \ is a limit of continuous differentiable and bounded functions, a
useful feature in economics models.,

We need some further notation.
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Let [ denote the vector ({4, ..., 1,1 R", and m the matrix:
[Ikll .. knf\
Kin oe. Kual

Let k' denote the vector (kq;, ..., k., and k = (ky, ..., k.). Recall that k; is defined
to be E,_l k;((b)) of Problem (P)), rhe sum of the ccmrdmates of k.
Let F(l, m) be a vector valued function F(L m): R""x R*"™ = R"*, given by

F{II m}:F “-Jr kll. s :LI::'- R F Hm k‘lm rery kn.n]":lr

where, for each i, F'{l, k'):R""""" = R™ is a function representing the technology of
sector 7.
We make the following assumptions on the technology of the model;

Assumption 1. F admits an extension to a real valued function F, defined on a
neighbourhood of R"™x R"™™", F, continuously differentiable.

Assumption 2. There exists a vector £ = (£, ..., k) such that
F'(l, k') < Bk, forall f; =1

and k; = k.. Furthermore, ko< k;; for all § where ko is k,(0) as given in (b) of problem (P).
This assumption is basically a technological constraint on production, it represents the fact
that after certain levels of capital stocks the technology is constrained in its per capita
increases of productivity by the costs of maintenance of (per capita) capital stock
represented by the parameter 8.

Let Cy, % K, be a set of all consumption paths 1n l?H %" and all paths of capital
accumulation or allocations of capital to sectors in (H )", defined b:-,r

(ele), mit))e Gy, % Ky,
when

(i) e(r)e L[0,20)"", ie. ¢lt) is a measurable essentially bounded non-negative
path.

(i) m(r)e H,[0, o)™, and hence k(1) e H ) 1l} o0)" 7, for all i. Note that by Sobolev
inequality Nirenberg (1974) HA[ﬂ oo} = |0, a0), i.e. the k;'s are continuous,

(iii) #(0) satisfies (b) of problem (P}, i.e. m{0) = [k,-,-l{ﬂ]l} with the corresponding k(0
{also denoted ko) = (ko (00, ..., & (00 and &;(0) satisfies (b) of (P).

(iv) Constraints (a) and (b) are satisfied a.c. for each pair (c(¢), m{)) in Cy, % K, for
some measurable path {{f) in [L [0, 00)]™".

v) 0=c(t)=Fil{), m(#)) a.e., and

{vi) For |h|<1, and all 7 [0, o), there exists an N =0 such that

|Actt, )| = N|AF G, k)|

where Ac(t, R)=cl(t+h)=cif), and AF(1, h) denotes a similar variation function of F
evaluated along the path, N a constant.
It can be shown that condition {v) can be replaced by the weaker condition;
4
clf)= I F), mitds,
0
Condition (v) is a standard assumption in optimal growth models, i.e, capital cannot
be consumed, see e.g. Ryder and Heal (1973). Condition (vi} bounds changes in the
feasible consumption paths in small intervals of time by a constant times changes in the
variation of output.
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The mathematical role of condition (vi) is to rule out the case of non-existence due to
optimizing sequences with unbounded oscillations, the so-called “*chattering controls”
which arise because non-convexities in certain environmental optimal control problems, as
discussed for instance by C. W. Clark (1976, p. 171). Condition (vi) is generally not
needed in convex problems, as a convex utility will assign a higher welfare value to a
consumption path that exhibits a lower degree of variation (i.e. a lower derivative in
absolute value) and has the same integral of consumption over time. In non-convex cases,
the analogue is to require that the welfare function penalizes high variations of consumption,
a condition that could replace condition (vi).

It should be noted that the problem studied here is different from the problem of
optimal consumption over time of a fixed stock when no production occurs. This is
because the per capita capital inputs of production in this model cannot themselves be
consumed without their prior transformation into goods by the production technology.
However, the problem of consumption of a fixed stock could be formally transformed into
a similar problem to the one formalized here as

-

max J wie, e ¥di, st j’ cltidr =5,
] 3 1]

where Sqis a fixed stock. In this case, if 5(¢) is defined as 8 — [, c(r)ds, so that ${¢) = —¢(1),
condition (v) above then becomes c () = Fs{t)), where F(s(t)) = —d5(#)/dr. Condition (vi}
becomes then a restriction on the absolute value of —ds(t)/dt, which will not usually be
needed if u is concave. For the study of the existence problem in models of optimal
consumption over time of a fixed stock see, e.g. Aumann and Perles (1965} and Artstein
{1974). Typically, only for restrictive families of utilities one can show that this problem
has a solution. The set Cy, defined by {I) to (V1) above is called the set of feasible
consumption paths, and similarly K the set of all feasible capital matrix paths, with initial
capital stock allocation k. The space of all feasible capital paths & (¢} corresponding to
matrices in K, is denoted Gy,

We also make the following assumption on the time dependent utility function:
u:R" xR —+R is said to satisfy a Caratheodory condition, if uic, t} is continuous with
respect to ¢ € R for almost all ¢ in R, and is measurable with respect to f for all values of ¢.

The next two lemmas establish || - |, compactness under the assumptions of the sets of
feasible consumption paths C,,. Together with Proposition 1 that characterizes continuity
of the welfare function W, these two lemmas are used to establish existence of a solution.

Lemma 1. Under Assumptions 1 and 2 for each initial capital stock allocation ky, the
set Ci, is a || | bounded || - |lx closed subset of (H)"'.

Lemma 2. C,, is precompact in the | - ||, norm.

A proof of these two lemmas can be obtained from the arguments in Chichilnsky
{(1977). Define now Wis) by

oo

W{s}:_[ e Muls(t), t)dt, I<<A-=0),

0

If i (s, ¢) satisfies the Caratheodory condition defined above, for s = R"™ and ¢ £ [0, o0, then
we have the following

Proposition 1. A necessary and sufficient condition for W ro define a continuous
function from HY, to R, is that |u(s, )| = alt)+ b|s|* where b is a positive constant and a(t)
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satisfies =
I althe Mdr< oo, alti=0.
0

For a proof of thiz proposition, see Chlchllnlﬂk}' (1977).

As discussed above, the spaces HY are equivalent for all A, Howewver, as seen in the
qtatement of Proposition 1, the necessary and sufficient condition for W to be continuous
in HY involves A as a parameter, since al[!} must satisfy [ a(f)e *'dr < oo. The question
arises whether the continuity of W in H for some A, implies W is continuous in all other
A’'s, or, if not, for which range of A’s this is true. In the following we discuss this question,

Let 0=} = A, then

1, -1,
§p—=2 55" — g

Also, H) = H?. Therefore, if W:H} - R is| - ||, continuous, then W|go: H; - R is|- ||,
continuous. Hence, for all 0= ¢ = A, and positive valued w, if the function

Wis)= J e Muisir), it
N .

is H\ continuous, then W is also || - ||, continuous.
In view of Proposition 1 we now assume A = & where § is the discount factor of the
definition of the social welfare function W in problem (P).

Theorem 1. Under the Assumptions 1, 2 and 3, there exists an optimal solution ¢*® to
problem (P) in the set of feasible paths C,,. If w is strictly concave, and F concave, ¢ is also
unique.

Proof. Existence follows from Lemmas 1 and 2 and Proposition 1. Unigueness is
established in a straightforward way using concavity assumptions on « and on the
technology, see Chichilnisky (1977). ||

We now turn to the characterization of solution. We study the convex case first.

Definitions. H5' [0, o0) is the cone or positive paths in HUT0, =), ie. e s HY [0, a0)
{also denoted e =0y when ci{ti=0a.e forfe[0, ). c=0whenc=0and c{¢)=0a. .€.on
some set of positive measure, and ¢ » 0 when ¢{¢) =0 a.e. in [0, 2¢). A function f: H!=+R
s 1ncreasmg when fl[c]l }ffclj if c—¢y =0, Note that if u 15 strictly increasing, then

W (HY)"=>Risan increasing function.

We next study existence of strictly pnsitive competitive prices for ¢*. First we give a
definition of prices in this model. A price p is an c]cment of the dual space of (H,)", a
continuous 11near real valued functional defined on (H})" which is pnsnwe on positive
elementsof (H} )" :ple) e R is called the value of ¢ in price system p. Since H is a Hilbert
space, by dcl"mition the space of prices has the following properties: A non-zero price p
must be non-zero at some period of time, i.c. p#0 and p=0-=p(t) =0 on some set of
positive measure of R+. A price p well defines a (finite, non-negative) value for any path
of commodities ¢ in the space, and the value of ¢ is given by the inner product:

[==]

J e Mpif) - cinyde®
0

Theorem 2. Under the assumptions of Theorem 1, when u is strictly increasing and both
1 and F are concave, ¢ *-is an optimal path in Cy, with respect ta W if and only if there exists a
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price system p* such that
(i) p* well defines a present value for all positive consumption paths ¢ in (H}"" given

by:
p*{c}=f e “p*(r) - c(n)dr
(1]

(i) |p*l=1, p*»0, and

{iil) ¥ is competitive in price system p*, (i.e. ¢® maximizes the value of p*(c), forallc in
Cy,) and c* minimizes expenditure (in p*) within consumption paths yielding a welfare level
af at least W(c*) (i.e. within the set {c € C,, Wic)= Wic*)}.

For a proof of this theorem, see Chichilnsky {1977).
We now discuss characterization of efficient paths. We first need more notation.

Definition. A feasible consumption path ¢ in Cy, is called efficie nt” if there exists no ¢,
in Cy, with ¢, >¢.

From Theorem 2 one obtains immediately, under the same assumptions:

Corollary 1. Assume that € is an efficient path in C,,, which is also optimal with respect
te a welfare function

W= J e Mulel), Ddt,
n

where u satisfies the Caratheodory conditions and is not necessarily increasing, and Wic)
assumes on the space of consumption paths at least one value strictly larger than W(Z). Then
there exisis a price system f such that:

(i) § well defines a present value for all positive consumption paths ¢ in (H5 "™ given
by

pO)= | B0 e

(i) |p]=1 and, furthermore | gl| > 0.
(iii} If e1=¢, fle)) = p(c), and
{iv) € maximizes the value of filc)in Cy,,

For a proof, see Chichilnisky (1977).

This corollary is obtained from Theorem 2, pointing out that 7 is non zero linear
fumlmna] separating €, and a certain minimum convex set containing A, and the cone
{HD" +¢)

Remark. The Hl]hb]‘t space stmctura of H} is important to obtain (i }—smce
mntlnult}.f of f=>pe(H})" because ()" is self dual. Note that if instead of being in
(H1)" consumption paths would be in L., continuity of § may not imply that § as a
function, is non-zero. Note also that because of the Hilbert space structure of the space of
consumption paths, if £ is an efficient path in C,,, which maximizes in Cy, the value of a
price system 7 (as defined above), then this price must be always given as a (positive)
function F(t), with the value

ﬁ{ﬂ=L 5} el

being well defined for all paths ¢(t) in the space of consumption paths.
We now make further assumptions on the model in order to obtain a characterization
for the optimal path without global convexity assumptions on either the function i or F,
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We shall use tools of analysis on Hilbert spaces to find a positive supporting price for the
optimal path in a neighbourhood of it; these conditions are obtained by gradient methods,
available in Hilbert spaces but not in other infinite dimensional spaces without inner
products. For the non-convex cases, we need to require more differentiability and also
certain regularity conditions, which are not needed for the results in convex cases. To
simplify notation we now work in a one sector case, i.e. { = 1.

Let the constraint (a), with initial conditions (b} of problem (P}, be represented as an
integral operator. This is accomplished by rewriting the differential equation

k=F{Lk)\—c—pBk
ko= k(0),

as an equivalent integral equation:
P
kt) k0= [ FlLk)-c-pk
(]

The latter integral equation can be written as an operator equation
Alk, c)=1;

for related intepral equations see e.g. Luenberger (1969, 9.5, p. 255).

Let HS be the Sobolev space defined as the completion of all Ci (twice continuously
differentiable and bounded) functions on [0, o¢) with the norm | - |l induced by the inner
product

ao

(f, E}§=J e MTE_ D fir) - D0y,

(1]
1.e.
|l (6 A 2 e

Assumption 3. We assume that the feasible consumption gaths in C,, and the feasible
capital accumulation paths in K, are both contained in H [0, =¢). These amount to
constraints on the derivatives of the consumption and capital accumulation paths which
are generally satisfied by the solutions of one sector models; this is the case for example
when initial capital stock equals that of the asymptotic steady state. In this case the
condition is satisfied, as the constraints (v) and (vi) are never binding. Therefore one can
dispense without loss of the feasible paths that do not satisfy this condition, Furthermore,
we assume that the utility function uic, £) is e icontinuously differentiable),

Because of Sobolev's theorem (Nirenberger, 1974), Assumption 3 implies €, is
contained in C'' and K, is contained in C', i.e. the feasible consumption and capital paths
are both continuouvsly differentiable. In this case, if the constraint (a) of problem (P) is
written as above by an operator A, then it follows that A is a continuously Fréchet
differentiable mapping from Hi x H? into H: ; see Luenberger (1969, 9.5, p. 255). In
order to guarantee sufficient repularity of the solution, (continuous Fréchet
differentiability) we further assume:

Assumption 4. In a neighbourhood of any optimal path ¢*, the equation Ak, c)=10
defines a unique implicit function k{c), and k(c) satisfies a Lipschitz condition

lkie) = k(wli= Rl — vl

for some positive number R,
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Special cases where Assumption 4 is satisfied include the standard one sector
neoclassical model, where the equation ¢* = (k) relating capital stock with optimal
consumption level gives a sufficiently well behaved function.

A related Lipschitz assumption but on technology was made by Fujita (1974), in order
to prove existence and only for convex cases.

We now obtain the following characterization: its local nature makes it applicable to
local decentralization only:

Prnpositiun 2. Under the assumptions of Theorem 1, Assumptions 3 and 4, for any
optimal pa.rh c¥ there exists a price system p* such that
(i} p* well defines a present value for all positive consumption paths in H given by
(4]

p*{c}=I _Mp (Fhcit)dt
0

(ii) |p*i =1 and p* >0 and, in a neighbourhood U of c¥,

(iii) p* is a local support for the feasible consumption set Cy, at c*. Furthermore, if the
production function F is locally concave ar ¢, then ¢ is locally competitive in price system
p*, i.e. ¢* maximizes the value of p*(c) for all ¢ in U = Cy,,

Proof. For this proof we use a gradient argument, which is available in Hilbert spaces.

Because of Assumptions 3 and 4, both the functional W and the constraints given by
{a) and (b) of problem (P), and denoted as above by the operator A(k, c)=0, are
continuously Fréchet differentiable functions see Luenberger (1969, 9.5, p. 255 (6)).
Furthermore, by Assumption 4, c* is a regular value of the operator A, see Luenberger
{1969, 9.5, p. 261). Therefore the conditions of Lemma 1, 9.3, p. 242 of Luenberger
{1969) are all satisfied, and the gradient of W is Grthogcndl to the surface given by the
constraint A(k, ¢) =0. Note that the gradient of W at ¢* exlsts by Assumption 3 on u.
Therefore, if we define p* to be W,+, the gradient of W at c®, p* gives a functional in Hi,
and by normalization, it can be made to satisfy |I *|i=1. The arguments made in
Theorem 2 of Chichilnisky (1977) to prove that p® >0 also apply to this case. This
completes the proof of Part (ii),

Part (i1} is satisfied, since the gradient of W, W, is orthogonal to the tangent of the
constraint surface A(k, ¢1=0 by Lucnberger (19692, 9.3, Lemma 1). Note that the
existence of this tangent surface if assured by the differentiability and regularity conditions
of A (Assumptions 3 and 4).

Fmalty, note that Part (i) is also satisfied because H?: < H}, so that for any f in H; and
g in H}, the inner produet

(f,g) =J eTNF(F) - glo)d
n
is well defined. |
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MOTES

1. Some of the arguments gwn;—:u here for Hilbert (L and Sobolev) spaces could also be given for more
general L, and p-Sobolev spaces (2 = p < o0, However, gradicnt arguments are available in Hilbert spaces and
not in genefa]_ L, spaces; they are useful to compute solutions, and for the results of Proposition 2 here. In
addition, the se].f -duality of Hilbert spaces makes them especially desirable for proofs of existence of general
equilibria, in which ixed points of excess demand maps from the price space to itself are sought, The results of
this paper are geared to provide “building blocks™ for such existence proofs,
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2, Another way to show existence is to prove thal every maximizing scquence is compact, see also
Chichilnisky and Kalman {1980). For this latter type of proof eonvexity (of the set and of the functions to be
maximized) is extremely useful, but without convexity the theorems needed for this procedure are not available.

3, A weighted L; space is a space of measurable functions which are square integrable with a given (finite)
measure on 8", It is a Hilbert space with the inner product between two functions given by the integral of the
product of the functions. In Chichilnisky and Kalman {1980} a similar approach was used for the study of optimal
and efficient paths, in convex discrete time models,

4, Anelementof L,(R, u)iscalled positive if fir) =0 a.e. in R. The positive cone of Lo, L.+ has interior
points
5. Itisassumed here that the production technology is o homogeneous function so that (a) can be written in
per capita form; the results are valid for non-homogeneous cases when the variable L of population is bounded
above instead of prowing at an exponential prowth as assumed here. The pattern of growth of the population can
be given different forms, or it can be determined endogenously. The parameter # in (a) is the sum of the
depreciation rate of capital and the growth rate of the population.

f, Mo more general concept of derivative or of integral (e.g. as Denjoy’s) could lead 1o a less restrictive
requirement on k; than absolute comtinuity, since equation (a) implies {under trivial assumption of F, e
sup [FUL E9 1= 1, k= M} <o that & is locally bounded from above, so that its integral has 1o be absolutely
continuous. Once the model is defined as above, it follows immediately from the measurable selection theorem
{using Borel-measurability of F') that there is no loss of generality in assuming furthermore that also the s and
the k;'s are Lebesgue measurable.

7. {H)" denotes the Cartesian product of " with itself » times. Similarly for H) and L.

8, Both these properties are, of course, not necessarily Lrue for positive prices in £.5.

O, Mote that an aptimal path may not be efficient, unless the wellare function W is incrcasing, ie.
& = o Wil > Wic), Also notc that for a given wellare function W, an efficient path may not be optimal with
respect to W
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