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We study properties of the solutions to a parametrized

constrained optimization problem in Hilbert spaces . A special ~-

operator is studied which is of importance in economic theory ;

sufficient conditions are given for its existence, symmetry,

and negative semidefiniteness . The techniques used are calculus

on Hilbert spaces and functional analysis .
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Introduction

2

In a wide number of economic problems the equilibrium values

of the variables can be regarded as solutions of a parametrized

constrained maximization problem.

	

This occurs in static as well as

dynamic models ; in the latter case the choice variables are often

paths in certain function spaces and thus can be regarded as points

in infinite dimensional spaces .

It is sometimes possible to determine qualitative properties of

the solutions with respect to changes in the parameters of the model.

The study of such properties is often called comparative statics ; [15], [2], and

[ 10],

	

Certain comparative static properties of the maxima have

proven to be of particular importance for economic theory, since the

works of Slutsky, Hicks, and Samuelson [15] : they have been formu-

lated in terms of symmetry and negative semidefiniteness of a matrix,

called the Slutsky-Hicks-Samuelson matrix .

	

A discussion of this

matrix and its applications is given in Section 1,

	

The study of these

properties in economic theory, however, has so far been restricted

to static models where the choice variable and the parameters are

elements in Euclidean spaces, and where there is only one constraint .

Infinite dimensionality of the choice variables arises naturally from

the underlying dynamics of the models .

	

For example, in optimal

growth models with continuous time and problems of planning with

infinite horizons [4] and also from the existence of infinitely many

characteristics of the commodities indexed, for instance, by states

of nature in models with uncertainty, by location, etc .

	

Many times

these models are formalized as optimization problems with more

than one constraint .

3

It is the purpose of this paper to extend the study of-the Slutsky-

Hicks-Samuelson operator to a general class of parametrized,'

constrained optimization problems which appear in recent works in ~'

economic theory : the choice variables and parameters belong to

infinite dimensional spaces, the objective function to be maximized !'

depends also on parameters, and the optimization is restricted to

regions given by many possibly infinite parametrized constraints,

linear or not . l The results provide a foundation for the study of

comparative statics in dynamic models such as optimal growth and

other dynamic models [4] .

The derivation of the Slutsky operator is more complicated in

the case of many constraints, and the operator obtained is of a slightly
i .

different nature .

	

One reason is that the "compensation" can be

performed in different manners since there are many constraints, as'~

becomes clear in the proof of Theorem 1 and the remark following it .

Also, the existence of parameters introduces new effects that do not

exist in the classical models ; in general, the classical properties

are not preserved .

	

Further, since the values of the constraints may

be in an infinite dimensional space of sequences (denoted C), the'

"generalized Lagrangian multiplier" may also be infinite dimensional, '

in effect, an element of the dual space of C ,

	

denoted C* .

	

To avoid

the problem of existence of such dual elements which are not represent-'

able by sequences (e . g . , purely finite additive measures [S]) and'thus

lRelated work in infinite dimensional commodity spaces has been done
for special cases of one linear constraint and no parameters in the
objective function by L. Court [7] and Berger [3] .

	

In finite dimen-
sional models, related work for parametrized models with one
constraint was done by Kalman [9], and Kalman and Intriligator [10] ;
Chichilnisky and Kalman studied parametrized multi-constraint
problems in [6] .
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complicate the computations, we work on a Hilbert space of sequences

C . Infinite dimensional economic models where the variables are

elements of Hilbert spaces have been studied in [4] and [5],

The extension from finite to infinite dimensional choice variables

and parameters involves further technical difficulties .

	

In the first

place, existence of optimal solutions is harder to obtain since closed

and bounded sets in infinite dimensional spaces are not, in general,

compact in certain topologies such as the topology of the norm. To

avoid this problem, one usually uses certain weak topologies in which

norm bounded and closed sets are compact .

	

However, in these

topologies, the continuity of the objective functions is more difficult

to obtain, and thus the usual proofs of existence of solutions by

compactness-continuity arguments may restrict the class of admissible

objective functions .

	

However, using the concavity of the objective

function and convexity of the set on which the optimization is performed,

we prove existence of an optimal solution on norm bounded closed sets 2

or weakly compact sets without requiring the objective function to be

weakly continuous, which widens the choice of objective functions .

Thus, the existence of a solution can be obtained in more economic

models of this type ; a useful tool here is the Banach-Saks theorem [14] .

In Section 1 sufficient conditions are given for existence and

uniqueness of a C I solution to a general optimization problem and

for existence of a generalized Slutsky-Hicks-Samuelson operator

which contains as a special case the operator of classical economic

2 In any reflexive Banach space or Hilbert space, norm bounded and
closed sets are weakly compact [8] .

models .

	

In Section 2, properties of this operator are . studied : . , a class:~-

of objective and constrained functions is shown to preserve the

classical properties of symmetry and negative semidefiniteness of

the operator, which are, in general, lost in parametrized models,

as seen in [10] .

Section 1

5

We now discuss the Slutsky-Hicks -Samuelson operator and its

applications .

	

For further references, see, for instance, [15] and [10],

Consider the maximization problem :

	

I

subject to

	

g(x,a) = c

where f is a real valued map defined on a linear space and g is

the optimal solution vector

	

x denoted

	

h(a, c)

	

is a

	

C1

	

function

of the variables a and c, and, as the parameter c varies, the

f represents a utility function,

	

x consumption of all commodities �

a prices of all commodities and c income.

	

In this theory,

	

h is

vector valued, defined on a linear space.

	

Under certain assumptions

constraints describe a parametrized family of manifolds on which f ,,

is being maximized . In neoclassical consumer theory, for instance,

called the demand function for commodities of the consumer . In

neoclassical producer theory,

	

f represents the cost function, x-'

inputs,

	

a Input prices,

	

and g a production function constrained ;

by an output requirement c ;

	

in this theory,

	

h is called the demand



function for inputs of the firm .

	

In both these models,

	

c E R+.

Comparative static results relate to the Slutsky-Hicks-Samuelson

operator, given by the derivative of the optimal solution h with

respect to the parameter a restricted to the manifold given by

6

as h(a,c)If=r

parametrized by the real number

	

r, denoted

This operator will also be denoted

	

S(a, c) .

	

It is a well known result

that in the finite dimensional consumer model under certain assumptions :

S (a, c)

	

=

	

as Ma, c) + Ma, c)

	

ha, c73s

Equation (*) is also called the fundamental equation of value .

	

In this

case

	

S(a,c)

	

is considered unobservable since it represents changes

in the demand due to a price change when utility is assumed to remain

constant, but the right hand side represents two observable effects

called the price effect and the income effect on the demand, respectively .

Analogous operators are found throughout the body of economic theory .

Important properties of the

	

S(a, c)

	

operator are its symmetry and

negative semidefiniteness .

	

In addition to their empirical implications,

the symmetry property (S) is related to the Frobenius property of

local integrability of vector fields or preferences and the negative

semidefiniteness property (N) is related to problems of stability

of the equilibriiun,

7

A natural question is whether the results of neoclassical consumer

and producer theory can be obtained for the general classes of con- ; M`.P
.

strained optimization models described above .

	

The results of this

paper point in this general direction .

	

However, the S and N

properties of the

	

S(a., c)

	

matrix are not, in general, preserved in

	

.i

parametrized models [9] ;

	

thus, one can at most hope to obtain

sufficient conditions of the classes of models (objective functions

and constraints) in which these properties are still satisfied .

	

This

is discussed in Section 2 .

We now formally define the problem : for a given vector of

parameters

	

(a, c)

	

we study the solutions of

restricted by g(x,a) = c

We assume that f and g are twice continuously Frechet differentiable

(denoted C 2 ) real valued and vector valued functions, respectively.

For a discussion of Frechet derivatives see, for instance, [12] or

[13] .

	

The Frechet derivative generalizes the definition of the Jacoblan-;

of a map between finite dimensional spaces . In infinite dimensional

	

. ;

Banach spaces there are other possible definitions of derivatives, such

as the Gateaux derivative which generalizes the concept of directional-"

derivatives . For our purposes, we use the Frechet derivatives since

much of the theory of ordinary derivatives extends to these types of - -!

derivatives, and since the implicit function theorem has a satisfactory

extension in this case . In the following, all derivatives are Frechet . ',



We assume that the variable

	

xE X,

are real Hilbert spaces and that

	

c E C,

We assume that the spaces X

denoted X + and C + ,

	

and we

which are strictly positive . 4

[8], and let A 1 and

(a, c)

	

in

	

A1 X G I ,

	

denote by

	

gc,a

(x E X

	

: g(x,a) s c)

The Lagrangian of (1), denoted L,

	

is a real valued map on

X X A I X C I X C

	

(C

	

the dual of

	

C ) given by

a E A, where X and A

an 1,

	

space of sequences 3

and C have natural positive cones

denote by X+ the set of vectors to

Let T denote the weak topology on

C I be open subsets of A and C.

the set

L(x, a, c, >)

	

=

	

f(x, a) +

	

X(g(x, a) - c)

~2(x, a, c, X)

	

=

	

ax

	

L(x, a, c, ~.)

For any

X

where

	

X E C

	

(C

	

is isomorphic to

	

C

	

),

	

Let

	

`)' I : X I X A I X C I -,

be defined by

	

qj I(x,a,c) = g(x,a)-c,

	

and

	

~2: X I X A I X C I X C

X

C

-,

	

Y(X, R)

	

(the space of linear functionals from X to R) be defined by

where

	

ax L

	

represents the partial derivative of the function L

with respect to the variable

	

x,

	

as a function defined on

	

X I X A I X C I X C

3See, for instance, [5] for economic models defined on (weighted)

	

R2[O,m)
spaces, with finite measures on [0,-) .

4 If X

	

is,

	

for instance,

	

a sequence space,

	

xE X,

	

x = (x ),

	

t =

	

1, 21 . . . ,
then x is positive

	

(denoted

	

x> 0),

	

when

	

xt Z 0

	

for all t t,

	

(xt) A (0),
and x is strictly positive

	

or x>, 0,

	

when x > 0 for all t .
When

	

X =

	

(x(t))

	

then

	

x > O

	

if

	

x

	

0

	

and

	

x(t) a 0

	

a, e.
x >> 0

	

if

	

x(t) > 0

	

a. e.

	

Similarly, for

	

X = L2(12") .

s

with values, in view of the assumptions on

	

f

	

and

	

g, ; . on the dual, !i',fr"

space of X (denoted Xof continuous linear functionals on X

Let

	

tp : X I x A 1 X C I X C

	

.., C X X

	

be defined by

,P (x, a, c, >j

	

=

	

I9(x, a) - c,

	

ax L(x, a, c , 1))

_

	

(~ I(x, a, c),

	

~2(x, a, c, X))

Let X I be a neighborhood of X + ,

We now briefly discuss certain special problems involved in the

proof of existence of solutions and of the Sluts ky-Hicks -Samuelson

	

r

operator in infinite dimensional cases .

	

In the next result we make

use of necessary conditions of an optimum in order to derive the

operator

	

S(a,c) .

	

These necessary conditions basically entail the . . � '

existence of a separating hyperplane ;

	

in order to prove that they' :

are satisfied in problems defined in Banach spaces one uses a Hahn-

Banach type theorem which requires existence of interior points in the

regions where the optimization takes place (see, for instance,, the

	

e

discussion in [13]) .

	

However,

	

Lp spaces with

	

1 sp s m

	

have

positive cones with empty interior,

	

In these cases, however, if the

function to be maximized (f) is continuous and is defined on a neigh

borhood X I of the positive cone X + ,

	

the first order condition for.a

maximum can still be obtained (see footnote 10 below) .

	

An

important tool for the derivation of the

	

S(a, c)

	

operator is the

	

`~

Implicit function theorem in Hilbert spaces [12].

	

This theorem

requires Invertibillty of certain operators .

	

In [6] the authors Investi-

gated these Invertibility properties for finite dimensional models and
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showed that they are "generically" satisfied by using Sard's theorem .

Here we assume them ; one can refer, for instance, to the work of

Kantorovich and Akilov [11] for sufficient conditions on the functions f

and g that will yield the required invertibility of certain linear opera-

tors in infinite dimensional spaces .

	

This is discussed further in the

remarks after Theorem 1, One can also consider extensions of the

results of [6] by use of the infinite dimensional version of Sards'

theorem [16] . These results will be developed elsewhere, since they

exceed the scope of this paper .

THEOREM

	

I,

	

_Let

	

f: X I X A 1 -s R

	

_and

	

g : X 1 X A l -~ C 1
be

	

C2

	

functions .	Forevery

	

a E A ll

	

let

	

f( - , a)

	

be strictly

concave and increasing on x, and g be increasing in x . 5

	

Assume

the set

	

gc a

	

is a nonempty convex T- compact subset of

	

X 1, 6

g is regular as a function of x, 7

5 f

	

is increasing in

	

x

	

if

	

f(x I

	

> f(x2 )

	

when

	

x I - x2 E X + .)

6gc,a is weakly compact in X if it is closed and bounded [8] . So,
basically, condition G) can be viewed as a condition of houndedness
and closedness of the "technology" represented by the feasible set
gc, a .

	

Let

	

gc	a = [ x: g (x, a) = c] .

	

Then when g

	

is strictly increas-
ing in x,

	

given' that f is strictly increasing , also, the maximum of f
over gc a will be attained in this case at ~2 in kc

	

An example
in infinite dimensional spaces where the set

	

gc a

	

(s .convex is
provided by all the feasible consumption paths obtained from an
initial capital stock in an economy with a convex technology, in the
usual optimal growth model .

	

In these cases, the constraint g takes
the o jm of a differential (or difference) equation with initial conditions,see 4~],

7 i . e . , for all

	

(x0 , a0 )

	

in

	

X
I X A 1'

	

8x g(x0 ' a0 )

	

is onto .

(iii)

	

for each

	

(a,c),

	

(6/6(x, >))~

	

is a top linear isomorphism , and

(iv)

	

the operator Z defined in (6') below, exists for all (x, X) in

X I X
Cx

	

with

	

qj(x, a, c, X) = 0 . 8

Then there exists a unique global map

	

h: A I X C I -* X+

	

which is of

class C l satisfying

and for any choice of compensating constraint there exists a Slutsky-

Hicks-Samuelson operator

	

S : A I X C I -~ rE(A,X)

	

(the space of

linear functionals from A to X) given by

satisfying

S(a, c)

	

=

f(h(a, c), a)

	

=

	

max

	

f(x, a)

	

,
XE gc, a

a
S(a,c)

	

=

	

as h + ac h as g(h,a)

as h
+ 6c 11

(0(6a g ) - P(aa
f))

a2

	

1

	

622 L

	

1

	

6

	

Z(6

	

)
_a2

	

L-1

	

.
,a2

[\6x

	

(6x ) 6xg axg(6x2 1 axaa

where the operators 0, 11 are defined in (14') below, provided these

operators are well defined for all

	

(x, >)

	

with

	

~(x, a, c, X) = 0 .

8This assumption is shown to be "genericall " satisfied in finite
dimensional versions of these problems in (6] under certain conditions .
For a further discussion on the existence of the operator Z,

	

see the
remark after the theorem .

9We shall not distinguish between an operator and its adjoint .



Proof.

	

Since gc
a

is a T-compact subset of X+ by (i),

if

	

(xn}

	

is a sequence in

	

gc

	

a

	

with

	

f(xn , a) ->

	

sup

	

f(x, a),
gc,a

denoted also

	

(xn] ,

	

convergingthere exists a subsequence,

weakly, i . e. , [xn] -Ti h

there exists a subsequence

metic means

y
nk

converges to h in the norm .

	

By convexity,

concavity of

	

f( - ,a),

	

(y
nk }

	

is a maximizing sequence also .

	

Since

f is continuous, h is

of strict concavity of

	

f( - , a)

	

on

footnote 5, h is in g

xn 1

	

4- . . .

	

+ xnk

k

12

in gc a

	

[141 . By the Banach-Saks theorem
n

[x k)

	

such that the sequence of arith-

a maxiintun on

	

gc . a'

	

By (i),

	

1i E X i ,

	

We

denote

	

h by

	

h(a, c)

	

also .

	

Uniqueness follows from the assumption

x . Note that, as discussed in

By [13] (Theorem 1, p . 243) and conditions (ii) and (iii), a

necessary condition for

	

h(a, c)

	

to be a maximum is that

	

i)) = 0

	

at

(h(a, c), a, c, X)

	

for some

	

X > 0

and by the implicit function theorem for llanach spaces (see [t2])

it follows that

	

h(a, c) ,

	

which is the solution of system

	

q)

	

above,

1
is of class C ,

,t 10
in C .

	

Now by condition (iv)

We now derive the

	

S(a,c)

	

operator . 11

	

For each

	

(a, e) E A l X

the first order necessary conditions for an optimum are :

ynk E gc . a'

	

and by

then

10Note that the fact that

	

f

	

is continuous arfd defined on

	

X

	

,

	

which is
a neiphborhood of X F

	

replaces the condition in [13] of existence of
an interior point of X l .

F he approach used here generalizes the approach of Kalman and
Intriligator in [ 10] which is clone for one constraint and for finite
dimensional spaces

4)1

	

=

	

0

	

e. ,

	

g(x, a)

	

-

	

c

	

=

	

0

(2) and

where, for each fixed (a, c),

,(i 1 : X1 -j C

so that

where

Locally, at the maximum, the differential of (2)

	

can be written as :

( axl f)dx
+(axaa

f)da
+
(
\ax2

g)dx)
X* ((axaa

g)`1a)

	

+(aX
g)

and similarly for

system (3) in turn, can be written as

13

i . e . ,

	

dx Lx, a, c, M

	

=

	

0

( ( ax2

	

j

	

((
ax2

	

gJ

	

dxg dx) X

	

denotes
)

(( a
2

axaa

	

g) da) X

a
( a:~ g

o

	

) dX

I a

	

\
g

	

ax L)

	

dx/I1(bx ~

	

2 L) da

= 0
'-it



(4')

where as defined above

and similarly

14

a-L :X 1 x A 1 xC 1 xC* -.X *
ax

2

axaa

	

I, . Xi XA l xC 1 XC * -.

	

!J'(A,X * )

a
2

axz
L :X1XA1xClXc*-Y(X,X*)

so that for each a, c at the maximum

	

h(a, c) and at the corresponding a,

2
6

2

	

(L(h, a, c,), ))

	

E

	

1' (X,X* )
ax

To simplify notation we now denote

	

(a 2
/ax Z ) L

	

at

	

(h(a, c), a, c, X)

	

by

(3 ?/ax Z ) 1,

	

also;

	

by the assumption of existence of

	

z,

	

(a 2/ax2 ) L

	

is

invertible . 12

Thus, b y (iv),

ax gdX)

	

) (3'
z L/ax

By results of inverting a partioned matrix we have

a l
-(aa g

/
da + dc`

a 2

- axaa
L) da

11-

	

.
Since X and A :,re, llilbert spaces and tC is convex in

the varlable x, for

each

	

(a, c :)

	

the operator

	

(-,~
2
/ax

2 L)

	

will be negative definite at the

(x,X) which satisfy the first order conditions #(x,a,c,),) = 0 when x

is a maximum, and thus

	

(a
2
/3x? ) L

	

will be invertible .

20

	

~ax ¬~

	

z

	

;

	

-z aX

	

a

	

L .

	

, . t . . , ,V

~3

g)

ax

x gl

	

\axe
L

	

-(axz L/

	

(ax t;/t~ \ax2
L,

	

+(ZZ
L

	

g z

	

a
z

\ax

	

~ax,

(7) dx =

From (7) we obtain

(g) Tax =

and

where

z

From (5) and (6) we obtain

a
2

axz L)

ax2 L/-lCax gl
z

	

((az g) da - do

_1

	

~

1

	

Z

_
[(

a
a'
x
Z
2 L/

	

+

	

(

;62x2
L

	

(ax g 7

	

ax
g_

	

)(
_a

	L L/

	

1

	

(

	

L) da
ax axaa

L

	

(aax g) Z
(da G

1

	

_2

	

1(	2

	

_ l~

	

a 2

ax ` L

	

l a

	

9)

	

z

	

s(

	

)

	

aX

	

c,x

	

aX 1 '

	

axaa L)

Z 1-1

ax?
i, /

	

(ax f ;)

	

7,



Also,

Ilence, by (10) and (11), when df = 0

16

We now consider the effect of a "compensated" change in the

vector a,

	

obtained by a change in the parameter c, which keeps the

value of the objective function constant,

	

1. e . , when

From (2), this implies that at the maxima,

( 10 )

	

-

	

(ax g)
dx +(aa f) da = 0

do

	

=

	

(L g) dx F (aa g)
da

do -

	

as g

	

da) + da
f da = 0

17

vector stays on the surface

	

f = r,

	

on which

	

df = 0 .

	

Then, 'if c~ ,A .F .
=4,'

is the i-th component of the vector c, 13

be rewritten as 14

df

	

=

	

lax f) dx } (aa f)da

	

0_

	

_

	

a(13)

	

do

	

a

	

g

	

da

	

=

	

Al.

	

(~-f

	

da

	

(dcY _

	

a

	

.Y

	

di

	

6a

	

~i

	

y i

	

Y

	

as s

Zhus (12) and (13) imply that

(14)

	

do - (aa g)
da

	

,

becomes

_a
(14')

	

Ft(a a f)da+0(dc-(da g) da
`
/0

13In a basis of the Ililbert space

	

C,

	

Similarly, locally the

	

dc
1

	are
a "basis" for the cotangent bundle of C at c .

which implies in particular that when

	

df = 0,

	

the

	

do

	

s

	

are not all

	

14If

	

c

	

is a real number and there is one constraint, Equation (13)
becomes

linearly independent .

	

We now choose one of tire constraints--say the
(13 1 )

	

do -(aag)da

	

=

	

X (aa f)da
i-th one--to perform the "compensation, 11 1 . e . , to insure that the optimal

And,

	

in the classical case, where

	

a = p

	

(price),

	

g(x, a) = p " x,
c = I (income), x is consumption, (13) becomes

(13")

	

dl - x " dp

	

=

	

0

when df = 0

Note that the "compensation" has the effect of making the components
of do to be not all linearly independent on the surface f=r .

	

For
instance, in Equation ( 13),

	

dc'

	

is a function of all

	

dcj,

	

j t i .

	

Note
that o(dc) = 0 does not imply do = 0 ; the analog of this situation in
the classical case is the fact that _dI,

	

I = income,

	

is not a "free"
real variable any n>orc when

	

f = f ,

	

since

	

dI = x " dp.

	

In the classi-
cal consunier case the fact that Equation (14), when df = 0, becomes
(14'), is equivalent to the classical condition that

	

dc -x " dp (c denotes
income) becomes zero when df = 0 ; this follows from the fact that
((a/aa)f) = 0 in the classical consumer case (since f does not depend
on a), and also that 0 in this case is zero (see, for instance, [15]) .



where for each

	

(°., a, c, K), IL : R --C *

	

is defined by
15

and

	

0 : C; --C (G - C )

	

is defined by

Ol
j

= 1

	

if ,t=j, t iEi

0 .
,j

i-th place

\

I0, . . . ' 0' X-i ,0, . . .)

= 0

0

	

if t f j

	

and

	

,f / i
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and where cn = 0 if c is in R .

Therefore, from (7), (14) and (14') (denoting, as usual dx, when df = 0,

by

	

dx I f= r )'

15p : R~ G"` (- $z)E will be well defined if the conditions ~ = 0 holds
for

	

X » 0

	

in

	

C; a

	

at the maxitiiiim .

	

X >> 0

	

means

	

X(c) > 0

	

for
all c in C 1 .

	

In [1] sufficient conditions are given for the existence
of a strictly positive supporting hyperplane (or Lagrangian multiplier)
X >> 0,

	

in a different context .

16 If

	

G

	

is an

	

22[0,-)

	

space with a finite measure on

	

[O,m)

	

iven by

	

the
density function V t , tE[O,m) (X a constant in (0, 1)) as inl4] and [5],
then for 0 to be a well defined continuous operator from ,12 to 8z,
a necessary and sufficient condition is that

for :ill i .

zx _~ (h ~~

j=1 ~j
< C6

(15)

a z

\axz
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` 1

	

\
LI

	

(az g)Z(N" (aa f i da _ O, dc+ 0 (aa g~
da)

-1
\

	

l

	

a

	

(a

	

l a
- ~` W2 1=) 1 +

	

(aXz L' 11(az g/

	

Z (ox c) \a aL
L J(a?aa L)

da

and llnis, when

	

O(dc) = 0,

	

one obtains

1
_

	

a l
as If=r =

	

\ a

z

xz
L)

	

(ax g) 7_(,,('a f1
/ + ~(aa g/

z

	

1

	

z

	

_ t

	

_1

\axz L)

	

+

	

\axz I/

	

(ax g

	

ax °~ \axz
Ll

	

axa a L)

So, by (8), (9) and (15) at the maximum we obtain :

(16)

	

_a

	

h + a

	

h

	

_a

	

g/

	

_

	

_ah l f

	

+

	

_a

	

h (

	

(a
6a 6C

y3i' 1 \

_az

	

L

_1

+

	

(_a z

	

L

	

I
a

	

a

	

_aa

	

_i .

	

a z
_

- (\ax z	\ax z	)

	

~az g)Z(az g~\ax2L)~+axaa'L

S(a, c) , which completes the proof.



2 0

It eenar1,

Sufficient conditions for invertibility of the operators

	

a(xr~)
~, and

a g

	

)ZZ
L /

-1 \ ax g))

required in Theorem I can be obtained in certain cases for instance, by

direct examination of these operators, which involve first and second order

partial derivatives of the functions f and g .

	

For instance when the

spaces X, A and C are sequence spaces, these operators will be given

by infinite matrices . Conditions for invertibility of infinite matrices have

been studied, for instance, by Kantorovich in [11], If X, A and C are

spaces of LZ functions on the line, one can use Fourier transform tech-

piques as, for instance, those of [11], However, invertibility of operators

is a delicate point which requires technical considerations of its own ; in

this case, it requires conditions on the above operators (and thus on f

and g) and on the spaces where the problem is defined, depending oil the

particular nature of the model . Other techniques to study generic inverti-

Uility of related operators are given in [6] for finite dimensional spaces, by

use of the Sard theorem . These latter results could be extended to infinite

dimensional spaces, in certain cases, by use of an infinite dimensional

version of the Sard theorem [16] .

Section 2 .
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The classical property of symmetry of the Sluts ky-Hicks -Samuelson

matrix which in this framework becomes the operator

	

S(a, c)

	

In

Section 1, is, in general, not preserved [10],

	

For certain classes

of objective functions and constraints, symmetry of

	

S(a, c)

	

can be

recovered, as seen in the next results . These classes of functions

have been used in finite dimensional models of the firm, the consumer,

and micromonetary models .

In what follows we assume that all spaces are Hilbert spaces

of sequences .

PROPOSITION

	

1,

	

Assume the objective function

	

f(x, a)

	

has

the form

(1)

	

f

	

=

	

y[a " x]

	

I

	

f I (x)

	

+

	

f 2 (a)

	

a nd the constraints

the forth

conditions of Theorem I of Section I are satisfied where

	

a E A+C X

	

+

c E C + ,

	

Y,b t E R+	and

	

f ,g I

	

have the same properties as

g of Theorem 1 ,

	

Then there exists a unique global

	

C1

solution for Problem

	

(1)

	

of Section l,

	

and

	

S (a, c)

	

is

symmetric,

i2
g

	

(a),

	

i = I, Z, . , , ,

	

and that the

Proof .

	

In view of (H), (9) and (15), we obtain :

S(a,c) -

	

-/\axZ
1,)1

}

	

(
3

6

2
x"Z I1I 1(axg)/ 7(ox

f and

By computing the operator

	

(a Z /axaa)L

	

for the above objective and

constraint functions we obtain :



3 2

Note that

axaa L

Is symmetric .

	

This completes the proof.

First we prove that

2 1

b = 1(6xz L)
+

22

0

conditions for (i) and (ii) of Proposition 1 as follows :

PROPOSITION 2 .

	

Under the conditions of Proposition 1 , S(a, c)

is ne ative semi-definite if

	

y + ~i=1 Xi bi 2 0 .

Proof.

	

Negative semi-definiteness of S(a, c) is obtained from the

a

	

-1

	

a

	

a

	

\

	

3z

	

_1_
(_2L I(_
1a x

2

	

~ax g

	

Z (3x f/\ax'
Ll

is negative semi-definite .

L.et r. he any vector, and define a quadratic form Q1) = z'DZ .

Let

	

ii

	

= ((a2/ax2)L),

	

and

	

11-1/2

	

be the symmetric negative square
root of

	

II 1 .

	

Define

Then,

23

u

	

1/2 v

	

where

	

v =

	

-
ax g ,

	

and

	

y = H-1/2

QD = Y'Y - Yi u(u'u) -1 "Y

IIY11 2 - ilull -2 11"Y11 2

By the Schwarz inequality,

	

QD Z 0. 22

	

So,

	

S(a, c)

	

will be negative semi-

definite if (a 2 /axaa)[,

	

is positive semi-definite since under the

conditions of the proposition

	

(a 2/axaa)L

	

is diagonal .

	

But (a 2 /axaa)L

is positive semi-definite if

	

y+~oo1 ~ Ib
i z 0 .

	

This completes the proof.
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