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Application of Functional Analysis to Models of
Efficient Allocation of Economic Resources'

G. CHICHILNISKY® AND P. J. KALMAN’

Communicated by . Karamardian

Ahbstract. The present paper studies existence and characterization of
efficient paths in infinite-horizon economic growth models: the method
used is based on techniques of nonlinear functional analysis on Hilbert
spaces developed earlier by Chichilnisky. Necessary and sufficient
conditions are given for the existence of positive competitive price
systems in which the efficient programs maximize present value and
intertemporal profit. Approximation of these competitive price systems
by strictly positive ones with similar properties is studied. A complete
characterization is also given of a class of welfare functions (nonlinear
operators defined on consumption paths) for continuity in a weighted
{3-norm.

Key Words. Hilbert spaces, existence theorems, functional analysis,
applied mathematics.

1. Introduction

We study a recurrent problem in intertemporal economic analysis, the
dual characterization of infinite-horizon efficient programs by competitive
prices. From an economie Viewpoint, if an etficient program x admits a
competitive price system p at which x maximizes present value and inter-
temporal profit, then a centralized notion of efficiency can be transiated to
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one of decentralized maximization of value or profit through time. Hence,
efficiency can in principle be obtained, under these conditions, by decen-
tralized decision-making. A program is a point of a sequence space, each
element of the sequence denoting dated consumption. Hence, a program is a
stream of consumption through time.

An eflicient program within a producible set ¥ is one that cannor be
strictly dominated, or improved. in the vector order of sequences. From a
mathematical viewpoint, an efficient program x in a set of producible
programs Y can be described as one with the following property: the set V'
and the translation of the positive cone P of the sequence space with vertex
x only intersect at x. A competitive price p for v S a continuous linear
functional which takes its maximum over the set Y at the point x. The
existence of such a price can then be translated into the existence of an
appropriate closed hyperplane separating Y and P.. A problem arises
because Y and P are both contained, by their definition, in the positive
cone of the space of consumption sequences. In order to apply Hahn-
Banach type theorems to prove existence of separating hyperplanes, one
needs at least one of the convex sets being separated to contain an interior
point or at least an internal point.*

The only l-space of sequences which has a positive cone with non-
empty interior, or with internal points, is [.. However, the sup norm is fine
enough that its dual /%, the space of prices, contains elements which are not
representable by sequences® and do not have an adeguate economic inter-
pretation.” For this, among other reasons, fo-spaces with 1=p <0 and
especially [z-spaces seem natural candidates [or spaces of consumption
paths, However, these spaces have positive cones with an empty interior and
no internal points, and this rules out the application of the usual Hahn-
Banach type separation theorems which require one of the rwa disjoint
convexsets to have an interior ar internal point. Because of this. in Section 2
we prove a generalizadon of a Hahn-Banach separation theorem which is

" The hypothesis that one of the conves ses heing separated contams an interior point can be
weakened to the assumption that one of the sets has an internal point (sze Ref. 1) relative to
the lzast closed vector subspace containing the sat; this latter hypothesis, however, cannot he
eliminated. For 1 counterexample, see Dieudonné reference in Ref, 1. Dieudonné also shows
that, in a nonareflexive space, such as {-., two closed convex bounded sets withour 2 comumon
point may not have any closed separating hyperplane, [f the space is reflexive (2.2, f2), such
sets can be separated by a closed hyperplane. [n our problem, however, the two closed sers do
have one point in commaon, namely, the efficient or optimal path, so this last result also does
not apply, and new tools have to be used here.

*i.e., purely finitely additive elements, Ret. 1.

® This occurs, for instance, when the funcrion part of a price p is given by a purely fAnitely
additive measure on /.., and hence (s sequence part is identically zero. while 2 as a functional
on ly is not zero.
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shown to enable many standard results to be rescued. Furthermore, we give
a compiete characterization of certain nonlinear operators (welfare
functions) for continuity in a weaker weighted /5 norm. and we prove that if
the efficient program x maximizes the value of such a continuous welfare
function then the problem can also be overcome. Basically, one shows that,
in this case, one of the sets being separated is contained in 4 convex set which
has an interior in a weighted /2-norm, since it is the inverse image under an /5
continuous map, and intersects the other convex set at the point & only.
Thus, the separating hyperplanes can be chosen so as to be representable by
sequences, effectively elements of |7 = /5. Thus, it is shown that the question
of existence of prices is also related to the appropriate continuity of welfare
functionals, if one is to work on /5.

In Theorem 2.1, necessary and sufficient conditions for a separation of
the feasible set ¥ from the set of programs which are strictly Jarger in the
vector order are given. This separation result is equivalent, in this case, to
the existence of nonzero competitive prices for the efficient programs. Such
prices are shown to assign strictly larger present and intertemporal profit
value to strictly larger programs. They define continuously a bounded
present value and intertemporal profit for all programs in the space, which is
maximized in Y at the efficient program. A sufficient condition is also given
on the feasible set Y for existence of an efficient program in ¥ In
Proposition 2.1, a complete characterization of continuous urility functions
in a weighted {;-norm is given; these utilities are represented by sums of
discounted time-dependent utlities. Theorem 2.2 is an extension of Arrow,
Barankin, and Blackwell (Ref. 2} and Radner’s {Ref. 3) results. This
theorem gives an approximation of a competitive price p for an efficient
program x by a sequence of competitive prices p® which maximize the value
at ™ in the set Y, where the x"s are efficient pathsin ¥, x”" - x, and p* = p.
This resultextends those of Ref. 2, adapting the proof of Ref, 3 for programs
and prices in weighted {3-spaces. The results given in this paper are based on
previous work by Chichilnisky (see Ref. 4).

2. Competitive Prices for Efficient Programs

A production program is a sequence Ja, b}, 1=1,2, ... . where
a, € R" represents inputs, b.,, = R" represents outputs at period ¢ and ¢+ 1,
respectively, a, =0, b,y =0, and b, ., isin Toia,), T, amrws;mndence? from
R""to R"" representing the production possibilities or technology at date r.
For a production program {a,, b,..}, let {x.} denote the sequence {h, —a.},

¥ Le, o sel-valued function,
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t=2, and xy = —a,, which is called the ner outpus program. A feasible set of
net output vectors ¥ is defined as a set of nonnegative net output programs

Iz}, t=1,2,..., where b, T.{a,) for all + From now on, the word
program is used to denote net Owtpllt programs,
If x={x} and y={y}, r=1,2,..., are two infinite sequences of

vectors, we denote x =y fr, Zy forallfx=zyifxZyandx #y,and x =y
if x, >y for all ¢. A program x is gfficiens or maximal in a feasible set ¥ if
thereisno y in Y with y = x, Le., risefficientin Y if ¥ ~ P? ={x}, where PT
is the translation of the positive cone in the sequence space with vertex x,

Pr=lz|lzzx}.

A system of prices p is called a competitive price system for the program

rin Y if
pix)=max p(y).
ye ¥

If p ={p.} is a sequence of prices at each data ¢, the intertemporal profit of the
production program {a, b} at price {p,} and time r+1 is defined by
Prer- By —po- a, where p, - a, denotes the inner product of the vectors p, and
a,. For a review and discussion of these models, see for instance Ref. 5.

The approach that we follow here is to give these spaces of consumption
paths a weighted /;-norm induced by a discount factor, The notion of
distance of paths in this space seems quite well fitted for discounted types of
models; the results apply to nondiscounted models as well. Some of the
difficulties noticed by Majumdar and Radner (Ref. 4), among others who
work on [,-spaces, seem surmountable in this framework: in particular, a
difficulty that their approach runs into now disappears. Every value
functional in the dual of a Hilbert space of sequences can be represented as a
sequence of prices. and thus the difficulty that the sequence part of a nonzero
value functional may be zero is removed. In addition, in these prices, the
value {s given by an inner product and therefore has a ready interpretation.
This brings together the concepts introduced by Malinvaud (Ref. 8}, Debreu
(Ref. 7), and Radner (Ref. 3) for infinite programs in this space. Further,
economic relations between the concepts of efficiency, present value maxi-
mization, and intertemporal proft maximization of finite programs are
shown to be inherited by these programs.

Let x and ¥ be two bounded programs. Define the inner product:

(X, yIA =¥ A'(x- ), (1)

=]

where 0< A < 1. This inner product can be thought of as representing the
present value of program x in price system v with discount factor A. It
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induces a normed topology on ls, with norm -1l given by
el = (x, x)*2,

We consider the completion of /., under this topology. This space is denoted
H, to call attention to the parameter A in its definition; in Proposition 2.1,
the relationship between the parameter A and the continuity of discounted
additive welfare functionals is shown. The inner product defined in (1)
extends to an inner product on H, and defines a Hilbert space structure for
the space H,, which is an /;-space of sequences with the finite measure
induced by the density function A, r=1.2, .. ..

A price p is a function that assigns to every program in H, a presen:
value, which is a continuous linear functional on the space of all programs.
Thus, the space of prices is isomorphic to the dual space of H,, H¥ Since H,
is a Hilbert space, HY is isomorphic to H,.

Thus, the space of prices HY is a sequence space; and, if p = {p,} = H*
and y ={y,}is a program in H then the present value of y at price p is equal
to the inner produet

(g y)= X A'ppo)

The space of prices /% (continuous linear functionals on le With the
sup norm) must be strictly larger than the space of prices of /.. with the 01l
topology. Intuitively, since || |, is weaker than |- |, 0n Lo, 1.6, |- on e has
fewer open sets than |-, there exists then fewer continuous linear
functions on {. with _he |||, norm than with the ||'sup nOrm. A problem for
the choice of {/a, |- |sup) 25 & space of programs is that /% contains elements
which are not sequences: there are nonzero continuous linear functionals on
[, |+ |sup) whose sequence part is zero, the purely finitely additive measures
(Ref. 1). By weakening the topology of ., the purely finitely additive
measure part of |3 disappears (i.2., looses continuity in the new norm), and
we are left only with a sequence space H¥,

The following results show necessary and sufficient conditions for the
existence of nonzero prices supporting efficient programs under tech-
nological assumptions on the set Y of feasible programs. We first need a
lemma; a result related to this, but for sup norms instead of [;-norms, is
stated without proof in Ref. 8, page 52, E.

Lemma 2.1. Let f be a linear functional defined on an {;-space of real
sequences, f nonnegative on /4, the set of nonnegative sequences of ;. Then,
f is also continuous on I3, i.e., f& i

Proof, Let{£"} be the canonical base of /;. Consider the sequence of
real numbers S, defined by S = f(£"), /(£%). .. .1, the sequence partof £ We
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shall show first that §; is in 4. Consider a sequence 8 =(8,, 8,,...] in I},
Then,

r81=1( £ 8€)=1( T 8e)+o( £ 8.

which by linearity is equal to
R ; m
LAflEYHf X ﬁg‘)-
am=] AW=]

Since 3 /5 and fis well defined and nonnegative on £ = (3, it is obvious that

0> T 8€)=A( L 8)= T B,

Iz

so that, for any # in /3,

im T B.fi¢= i Biflé'y <o

Moema= | i=1

Then, for any 2 in /s,

L Bfl§) =

i=1
also. Since (> is self-dual, and S, is nonnegative and it well defines a
continuous linear function on 4, it follows that Sy is in I5. Now, let h = f— 8,
thatis. 4 is the nonseguence part of . We shall show that k isidentically zero,
First, note that A(£') =0, for all £' in the base of (5.

For all « in I3, there exists a 8 in /3 with
_limliﬁr'.":a:f] =20

=0

then, given any N =0, if k is large enough,
L=

T8 - Nog )& isin /3.

i=k+1
Note that, given that, for £ large enough,
S| £ (8—Na; ;u;")
=+l

Is as close to zero as desired, then since A = f — 57 and f is nonnegative on (3,
this implies that, for & large enough,

W T (8- Naig)

=kl 4
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is a nonnepative number, and 50

| % ,g,.g) = Nh(__i a.ﬁ-‘)

i+l =+

Also,

b

e h( i ﬁ,—fe) = Nh{ i mE') ={],

i=]1 W= | i
since by definition A = f— 8, Thus,
hiay=i{1/N1hig) for all N.

Since N is arbitrarily chosen, this implies that k{a) =0, which completes the
proof.

We need some more definitions. A point x is said to be internal to a set
¥ inalinear space X if, for all z in X, thereisan ¢ = O such that x +Az e ¥
for all A with |A| <e. Note that an internal point may not be interior. A
real-valued function w on H, 1s called serictly increasing wihen z = v implies
that wiz)=uiyh

Let ¥ be aconvex set, and x € Y. The cone with vertex x generated by YV
is the smallest cone with vertex x contaiming the set ¥ denoted CY, x). Itis
gasy to see that

ClY,x)={zlz=aly-x)rx, ye Y, a=0L

Lat A be any real number in (0, 1.

Theorem 2.1. I Y is nonempty, norm-bounded, closed, and convex
in H,, then there exists a maximal element ¢ in ¥. For any maximal x, the
following conditions {a), (b), (c) are equivalent, and are each necessary and
sufficient for the existence of 4 nonzero continuous supporting hyperplane
ps HY for Y, supported at x; further, for any such hyperplane, if = ¢ H,,
z=yx, then piz)=pix) and if z =%, then pizi=pix). This hyperplane p
defines a price system with respect to which x is value maximizing and
discounted intertemporal profit maximuizing; and, in this price system, any
program y £ H, has a finite present value given by

-
lpoxly =% Afp o x
r=1

ia) There exists a vector w = x which 1s at a positive distance from the
set C(Y, xl

{b) y maximizes a strictly increasing concave ||« |4 continuous function u
defined on a neighborhood of ¥,

i¢) Thereexistsaconvexset ¥, 2P, ¥~ ¥y ={x},and ¥, contains an
internal point.
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Proof. First, we prove existence of a maximal elementin ¥, Note that,
since H, is a Hilbert space for any A =(0, 1), it is reflexive, Thus, by
Alaoglu's theorem (Ref. 1), V is weakly compact. It follows thar Y is
compact in the pointwise convergence topology (see Ref. 1). Thus, by Ref. 9,
Theorem 2.2 there exists a maximal element x in ¥,

We now study the existence of the separating hyperplane for ¥ and £
with the above properties.

We first prove sufficiency of (a). Consider the set

L=CY. x]-P,={zr=y—u where ys ClY, x}, uc P, }.

L is a convex cone with vertex {0}, since C(Y, x} and P} are convex cones
and xe P » O Y, x).

Let w be the element of P; at a positive distance from (Y, x}. Then,
the vector wy = w —x isin A, and it is at a positive distance from L. For, if it
is not [i.e., if for all e <0 there is a u in k with d{w\, u) < €}, then since

diwp ul=diw +x, u+x<e u—x=sC{Y, x), Wi—X=w

this would imply that w is not at a positive distance from C(Y, x), a
contradiction.

Therefore, by Theorem V.2.12 of Ref. 1, the closure of the cone L, L,
and the point w, = A, can be separated by a nonzero continuous linear
functional, say, p. In addition, since ( is the vertex of the cone £, and p(0) =0
by linearity of p, p can be chosen so that p{z ) = O for all z in L. This [ast point
can be seen as follows. Since p separates I and w, there is a constant ¢ such
that

plu)=ec <plw,)

forall 4 in L.

If there would exist a 7 in L with @ = p{z) = p(0) =0, then, by linearity

of p,

plyzl=vyplz)= va.
Since y is arbitrary, and vz isin L for all v = {0, this would contradict the fact
that plul=c Yu in L.

We now complete the proaf of sufficiency of (al.

As shown in Ref. 1, the positive cone Py is supported by a continuous
tangent functional at p = (p;) iff p; = 0 for some { =1{) (see Ref. 1, page 458,
No. 9). Suppose now that z £ P7 and p{z)= piy]. Then, by the above result,
z; =y, for some & Thus, p{z)>piy) if z > v. This completes the proof of
sufficiency of (2). To see the necessity of (a), note that, if p separates C( Y, v}
from Py, then

Y, yi2{z e H, with pizi=piz1};
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thus, (Y, v is actually contained in a closed half-space, and, by definition
of P7, this implies (a).

We now prove (b). If v maximizes a strictly increasing concave
continuous function u defined on a neighborhood of Y, then the set

S={z:zeH and uiz)>uiyi}

is convex, and its interior is not empty. Thus, ¥ and S can be separated by a
nonzero continuous hyperplane p. Note that pi{z)=ply)if z=y.

The converse is trivial, since p itself is continuous concave and can be
taken to be positive, and thus increasing,

We now prove (c). For the sufficiency of {c), note that,if ¥, ~ ¥ ={x},
¥, 2 P7, and Y. contains an internal point, then by Ret. 1, Theorem V.1.12,
there exists a linear function p separating ¥, and Y, and thus ¥ and £;. We
next note that, by Lemma 2.1 above, if p is positive on £7, p is continuous.

The reciprocal is immediate: if p separates ¥ and P7, then

P: C{z in Hy, piz)=p(yl}.

Remark 2.1. For an example of a maximal program in a convex set
which does not satisfy the above conditions, see McFadden (Ref. 10).

Remark 2.2. Note that, in the above results, the separation theorem
vields a separation between Y and theset P7 ;and, if z = x, then p(z) > pix].
For some economic purposes, this strong separation is not needed: it may
suffice that ¥ maximizes present value and intertemporal profit with respect
o a positive price system, without being concerned with the value of
programs which are strictly larger than y.

Corollary 2.1. Let ¥ beaconvexsubsetin H . Forany maximal x, the
following are necessary suthcient conditions for the existence of 4 nonzero
price p in HY" with respect to which x is present value maximizing and
discounted intertempaoral profit maximizing,

(a) C{Y, x)is not dense in H,.

(b) v maximizes a concave function « which is continuous in a neigh-
borhood of ¥.

Proof. First, we prove the sutficiency of (a). Assume that there exists
win H, with d(e(Y, x), wi=0. By Ref. 1, V.2.12, there exists a continuous
linear function h, with

Riwilzc=h{C(Y. ).
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We shall see that # is maximized in C{Y, x) at x. Let hix)=g¢y If z €
CY, x),

hiz)=hirly —x)+x)=rh(v =x)=hix),
so that, if A(y) = ¢, for some v in 1Y, x) then
rhiv—xl+hix)>c

for some r=0. Thus, h{y}=c,, forall v in ¥, which completes the proof of
separation.
On the necessity of {a), note that, if there exists a continuous linear
function supporting ¥ at x, then C{Y, x}is contained in a closed half-space.
To see that (b} is necessary and sufficient, note that the proof of (b) in
Theorem 2.1 holds;

S={z:uzi>uixNY=2.

Note that § does not necessarily contain P? here. since u may not be
monotone nondecreasing,

Remark 2.3. The condition (a) of Corollary 1 is equivalent to (a) of
Theorem 2.1, when there is free disposal, j.e.,, whenif ye Yandz = v, then
e ¥

In the following, in view of the conditions ib) of Theorem 2.1 and
Corollary 2.1, we study necessary and sufficient conditions for continuity in
H, of utility functions of a usual type in economics, given by a discounted
sum of time-dependent utility of consumption. The next result zives a
complete characterization to the class of such functions that satisfy the
continuity condition (b) of Theorem 2.1. First, we need more definitions.

Let H; be the Banach space of all sequences r satisfying

A'x| <0, O=<ia<l,

Tr1G

with the norm

==

[i= T A’k
fml

Let ulic, v} be a nonnegative real-valued function of two variables, for

-, =1, 2,.... Assume that ¥ is continuous with respect to ¢ for

all values of «. Then, u induces a real-valued map W on any real-valued

function ¢ir) on {1,2,...} by

Wich=¥% Aulcie), )

ST
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when this sum exists. u(c(t), ¢) represents, for instance, a time-dependent
utility derived from consumption.

Proposition 2.1. The reai-valued function

2
Wicl=% A'uicle),
t=1]
is || |x continuous if
2
¥

wlx, t)=hit)+ u|c‘|

2 . . 1=
where « is a positive number and b H,™,

Proof. MNote that

15,

, W2 . 2
ATTcT = AT e

in f2. Also, ¢ = Wichis |-|l, continuous iff (a) d = A “"wid 4. ) is continu-
ous from ; to [y, with d{r) = 4 “*¢(1). By Ref. 11, Theorems 2.1 and 2.3, pp.
23-28 and remarks on page 28, a necessary and sufficient condition for (a) to
be continuous is that

AuATd D=aln+ald?
where aif}= {7 and a is a positive constant. Or, equivalently,
i, r,"f":'f:".'r}‘!'::qci! for hiry=A'alt)= H.™.
This completes the proof,

Remark 2.4. Lzt 0=p=A. Then,

- I-4,

fr-r -"‘- f_ # fu j._.__

also, H, 2 H, Therefore, f W:H, =R is |-|. continuous, when
W, :H,» R is also ||, continuous. Therefore, for all 0=p=4A, the
function

o

Wici= ¥

=

=1

Aluicte), 8
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is |-, continuous; or, equivalently, for all p = A, the function

o
Wic)= % pluic(s), 1)
=]
15 A, continuous.
Examples of functions which are /.-continuous and H, -discontinuous
can be constructed by considering functions which are essen tially given hy
the |||l norm, which is strictly stronger than || |,. For instance,

Fle)=sup (c,).

We now extend Arrow, Barankin, and Blackwell (Ret. 2) and Radner's
results (Ref. 3) on approximation of nonnegative coONtinuous competitive
prices for efficient programs by strictly positive ones in H,. The next result
extends a theorem of Ref. 3, page 352, which is valid only for serongly
compact convex feasible sets Y'; here, we prove the result for I e bounded
and closed convex feasible sets V. which is a strictly weaker condition
than that of strong compactness of Ref. 3.

Theorem 2.2. Let x be a maximal point in 2 convex closed |- [\ norm
bounded set ¥ in H;. Assume that ¥ satisfies one of the conditions {a)or(b)
of Theorem 2.1. Then, a price p such as that of Theorem 2.1 can be
constructed so that |p| =1, p =0, and (x, p) is the limit of a net (x*, ™) in
Y x HI" with the weak convergence on H*, such that, for all a, x™ is
maximal in ¥, and it maximizes the value of p* on Y, and gt =0,

Proof. We firstshow that, if ¥ C H, is a closed and |- ko Bounded set,
then ¥ is A,-compaet. Since Y is || | bounded and closed, Y is weak™
compact as a subset of /o C H,. Let {x"} be a sequence in V. Then, there
eXists a subsequence {x ™} such that +™ — r weak*® (Ref, L) for some z 2 ¥
Thus, x = z, for each ¢. Also, for all r and m

"=z | =2,
where N is the bound for Y in || |.. Since

lim ¥ A'=0,

Tawomax=T
there exists a T such that

v e
Y A M-z =4NT T AT
=T, r=T,

Choose M such that, for m =M and all r = iq,

12 i
|¥5 =z < g/2T..
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Then

E "\I|r:"ﬂ_zr:2

T

<eid:

and thus, for any € =10, there exists an M with

TAlxd -zt <e, for m = M,

[

-1
L s

Let
S={peH% |pl=1and p=0}

By the construction in Theorem 2.1, the competitive price corresponding to
the efficient program x can be assumed to be an element of the set 5. Note
that the results of Lemma 1, 2, 3 of Ref. 3 hold also in our case. The
evaluation map ¢ H, x5 = R, (v, p) = piy)is continuous, when § is given
the weak topology, and H, = § the corresponding product topology.

The set

S.={pipeS p=y}

for some g » 0 in A isaclosed subset of §. Since § is closed, it is compact in
the weak topology by Alaoglu’s theorem, and therefore so is §,. The proot of
Lemma 3 in Ref. 3 holds also in H,, so that the rest of the proof of Ref, 313
valid here. This completes the proof.
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