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We study properties of the solutions to a parametrized constrained optimiza-
tien problem in Hilbert spaces. A special operator is studied which is of im-
portance in econormic theory; sufficient conditions are given for its existence,
symmetry, and negative semidefiniteness. The techniyues used are caleulus
and non linear funetional analyvsis on Hilbert spaces.

InTRODUCTION

Lo a wide range of econumic problems the equilibriun values of the variables
can be regarded as solutions of a parametrized constrained maximization problem,
This oceurs in static as well as dynamic models: in the latter case the choice
variables are often paths in certain function spaces and thus can be regarded as
points in infinite dimensional spaces.

It is sometimes possible to determine qualitative propertics of the solutions
with respect to changes in the parameters of the model. The study of such
properties is often called comparative statics; [15], [2], and [10], Certain com-
parative static prapertics of the maxima have proven to be of particular import-
anee for economic theory, since the works of Slutsky, Hicks, and Samuclson
[15]: they have been formulated in terms of symmetry and negative semi-
definiteness of a matrix, called the Slutsky-Ficks-Samuelson matrix. A discus-
sion of this matrix and its applications is given in Section 1. The study of these
properties in cconomic theory, however, has so Far been restricted to static
madels where the choice variable and the parameters are elements in Euclidean
spaces, and where there is only one constraint. Infinite dimensionality of the
choice variables arises naturally from the underlying dynamics of the models.
For example, in optimal growth models with continuous time and problems of
planning with infinite horizons [4] and also from the existence of infinitely
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CUMPARATIVE STATICS AMD OFTIMAT, CHOICE 491

many characteristics of the commodities indexed, for instance, by states of
nature in models with uncertainty, by location, ete, Many times these models are
formalized as optimization problems with more than one constraint.

It is the purpose of tus paper to extend the study of the Slutsky—1icks
Samuelson operator ot a general class of parametrized, constrained aptimization
problems which appear in recent works in economic theory: the choice variables
and parameters belong to infinite dimensional spaces, the objective function to
be maximized depends also on parameters, and the optimization is restricted o
regions given by many possibly infinite parametrized constraints, lincar or not.!
The results provide a foundation for the study of comparative seatics in dynamic
models such as optimal growth and other dynamic models [4].

The derivation of the Slutsky operator is more complicated in the case of
many constraints, and the operator obtwined is of a slightly different nature.
One reason is that the “compensation” can be performed in different manners
since there are foany constraints, as becomes clear in the proof of Theorem |
and the remark following it. Also, the existence of parameters introduces new
effeets that do st exist in the classical models; in gencral, the classical properties
are nit preserved. Further, since the values of the constraints may be in an
infinite dimensional space of sequences (denoted €7), then “gencralized Lagran-
glan multiphicr™ may alsu be infinite dimensional, in effeer, an element of the
dual space of €, denoted C*, To avoid the problem of existence of such dual
elements which arc not representable by sequences {eg., purely finite additive
measures [B]) and thus complicate the computations, we work on a Hilbert space
of sequences (7, Infinite dimensional econamic models where the variables are
clements of Hillert spaces have been studied in [4] and [5].

Une problem in the extension from finite to infinite dimensional choice
variables and parsaptimal solutions is that closed and bounded sets in infinite
dimensional Epaces are nof, in peneral, COmpact in certain tu[m]ogi::s such as
the L, or C* norms, To avoid this problem, one wsually uses certain weak
topologies in which purm hounded and closcd scts are compact. However, in
these topologies, the continuity of the objective functions is more difficult to
ubtain, and thus the usual proofs of existence of sulutions by compactness-
continuity arguments may restrict the class of admissible objective functions.
However, using the concavity of the objective function and convexity of the set
om which the optimization s performed, we prove existence of an optimal solu-
tivn on norm bounded closed sets? ar weakly compact sets without requiring

' Related weork an inlinite dimensional cormemod ity spaces bus been done for spevial
cases of one linear constraint and ne paremetess i the ohjective function by L. Court [7]
and Herger [3]. Lo finsite dimensional models, related swoork For parammetrized mcdels with
one constraint was dence by Kalman [9], aod Kalman and Intriligator [10]; Chichilnisky
and Kalman studied parametnized mulfi-constraint problems in [6].

Tl any reflexive Banach space or Hilbere space, norm bounded and closed sets are
wieakly commpact [H].
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the objective function to be weakly continuous, which significantly widens the
choice of objective functions, Thus, the existence of a sulution can be obtained
in a much wider class of economic models; a useful tool here is the Hanach—
Saks theorem [14].

In Section 1 sufhcient conditions are given for existence and unigueness of a
(" solution to a general optimization problem and for existence of a generalized
Slutsky-Hicks—Samuelson operator which contains as a special case the operator
of classical economic models. In Section 2, properties of this operator are studied:
a class of objective and constrained functions is shown to preserve the classical
propertiea of symmetry and negative semidefinitencss of the operator, which are,
in general, lost in parametrized models, as seen in [10].

We now discuss the Slutsky—1licks—Samuelson operator and its applications.
For further references, see, for instance, [15] and [10]. Consider the maximiza-
tion problem; ‘

max f(x, a)

(F})

subject to plx, @) = ¢,

where f is a real valued map defined on a lincar space and g is vector valued,
defined on a linear space. Under cerain assumptions the optimal solution vector x
denoted h{a, c) is a €1 function of the variables @ and ¢, and, as the parameter ¢
varics, the constraints describe a parametrized family of manifolds on which f
i3 being maximized. In neoclagsical consumer theory, for instance, f represents a
utility function, x consumption of all commaditics, ¢ prices of all commodities
and ¢ income. In this theory, £ is called the demand function for commodities
of the consumer, Tn neoclassical producer theory, f represents the cost function, =
inputs, a input prices, and £ a production function constrained by an output
requirement r; in this theory, A is called the demand function for inputs of the
firm. In both these models, ¢ € B, Comparative static results relate to the
Slutzky—Hicks-Samuelson operator, given by the derivative of the optimal
solution A with respect to the parameter a restricted to the manifold given by

flz.a) =,

parametrized by the real number r, denoted

&
E "’!{El CH:-: i
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This operator will alsn be denoted S(a, ). It is a well known result that in the
finite dimensional consumer model, under certain assumptions,

S, €) = = ba, )+ Mo, e} 2 Ma, o "

da 7 ' LT

Equation {*} is also called the fundamental equation of value. While in this case
S{a, £) is considered unobservable since it represents changes in the demand due
to a price change when utility is assurned to remain constant, the right hand side
represents two observable effects called the price effect and the income effect
on the demand, respectively, Analogous operators are found throughout the
body of economic theory. Important properties of the S{a, ¢} operator are its
symunetry and negative semidefiniteness. In addition to their empirical implica-
tions, the symmetry property (§) is related to the Frobenius property of local
integrability of vector ficlds or preferences and the negative semidefiniteness
property [N} is related to problems of stability of the equilibrium.

A natural question is whether the results of neoclassical consumer and produ-
cer theory can be obtained for the general classes of constrained optimization
mudels described above, The results of this paper point in this general direction,
However, the § and N properties of the S(a, ¢} matrix are not, in general,
prezerved in parametrized models [9]; thus, cne can at most hope to obtain
sufficient conditions of the classes of maodels (objective functions and constraints)
in which these properties are still satisfied. This is discussed in Section 2.

We now formally define the problem: for a given vector parameters (a, ¢} we
study the solutions of

max flx, a)

restricted by plx, a) = &, )

We assume that f and g are twice continuously Frechet differentiable (denoted
C#) real valued and vector valued functions, respectively, For a discussion of
Frechet derivatives see, for instance, [12] or [13]. The Frechet derivative gene-
ralizes the definition of the Jacobian of a map between finite dimensional spaces.
In infinite dimensional Banach spaces there are other possible definitions of
derivatives, such as the Gateaux derivative which generalizes the concept of
directional derivatives. For our purposes, we uae the Frechet derivatives since
much of the theory of ordinary derivatives extends (o them, and since the
unplicit function theorem has a satisfactory extension in this case. In the
following, all derivatives are Frechet.

We assume that the variable xe X, ac A, where X and 4 are real Hilbert
spaces and that ¢ & O, an {, space of sequences.® We assume that the spaces X

* Bee, for instance, [5] for econonue models defined on (weighted) [0, =) spaces,
with finite measures on [0, o0}, and [4] for models defined on (weighted) L, and Seboler
apaces.
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and €7 have natural positive cones denoted X and €4, and we denote by X,* the
set of vectors in X which are strictly positive.! Let = denote the weak topalogy on

A [B], and let A, and C, be open subsets of 4 and €. For any (a, c)in 4, = €,
denote by g, | the set

frc Xt plx, a) = e},

The Lagrangian of (1), denoted 1., is a real valued map on X x A, = ¢, = €*
(C* the dual of ) given by

Lix, a, ¢, A) = f(x, a) + A{g{x, a) — ¢),

where A & C* (Cis isomorphic to C*). Let y: X, % 4, % € — € be defined by
dnlx o) = glx a) — e, and 0 Ay % A % O % O — 20X, B) (the space
of linear functivnals from X to R) be defined by

dolx, &, ¢, A) ai L{x, a, ¢, 3},

where (#/&x) L. represents the partial derivative of the function L with respect to
the variable #, as a function defined on X) » A; = €} % €7 with values (in
view of the assumptions on f and g}, on the dual space of X (denoted X+ of
continuous linear functionals on X [B]. Let f: &) = Ay ¢ € % C*F — C = X*
be defined by

B
ox

= (ofox, a, )y ol @, ¢, AJ).

Let X be a neighborhood of X+,

We now bricfly discuss certain special problems involved in the proof of
existence of solutivns and of the Slutzky - Hicks Samuelson operator in infinite
dimensional cases, In the next result we make use of necessary conditions of an
optimum in order to derive the operator S{a, ¢). These necessary conditions
basically entail the existence of a separating hyperplane; in order to prove that
they are satisficd in problems defined in Banach spaces one uses a Hahn-Danach
type theorem which requires existence of interior points in the regions where the
optimization takes place (see, for instance, the discussion in [13]). However, L,
spaces with | = p = co have positive cones with empty interior, In these cases,

fx, @, 0, A) — {g(x, a) — e, — Lix, a, ¢, Jl‘}}

*1f X B8, for instance, @ sequence space, x € X, x — (x,), £ — 1, 2, then x is positive
(denoted x == 0), when x, 7= O for all £, {x,) 7 (00, and x is strictly positine or x & 0,
when x; = 0 for all £

When X = L% & — (2(t)) then x = 0 0f » = 0 and o{8) 5 0 ae. % 5 0 f o) = 0
a.e. Similarly, for X = LY R").
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however, if the function to be maximized (f ) s continuous and is defined on g
neighborhood Xy of the pusitive cone X, the first order condition for 2 maxi-
muwm can sl be obtained (see footnote 10 below), An important twal for the
derivation of the S{a, ¢) operatar is the tmplicit function theorem in Hilbert
spaces [12]. "This theorem requires invertihility of coreain operators, In [6] the
authors investigated these invertibility properties for finite dimensional models
and showed that they are “generically” satishied by using Sard’s theorem, Here
we assume them; one can refer, for instance, to the work of Kantoravich and
Akilov [11] fur sutficient conditions on the functions f and g that will yield the
required imvertibility of certain linear operators in infinite dimensional ApHACCs.
T'his is discussed further in the remarks after Theorem 1. One can alse consider
extensions of the results of [6] by use of the infinire dimensional version of
Sards' theorem [16].

Tueorest 1. Let 1 X, A, ~ R and g1 X, 5 A, — C, be {Fréicher) C*
Sunctions, For every ae Ay, let (-, a) be strictly concave and increasing on x,
and g be increasing in x5 Assume

(i} the sel g, s @ nomempty convex T-compact subser of X1 *
(U} g is regular ar a function of x°
(i} for each {a, c), (8/(x, \)) b is @ top linear tsomorphism, and
(v} the operator Z defined in (6') below, exists for all (x, ) in X, » C* with
dx, a, e, A) = 0.8

Then there exists a unique plobal map h: Ay » O, —+ X+ which fs of class (1
satisfying

f(hia, ), a) = max f(x, a)

B s ncreasing in x if flr) - flx) when v, — 5, 0 X0

© geaisTorwenkly compact in X i it is closed and bounded 3] 5o, hasically, condition i)
cut e viewed as 0 condition of boundedness and elosedness of the "technology™ represen-
ted by the feasible set g, - Let @0 — [vzgly, ad — ok Then when g is strictly increasing
i x, given that /s stoictly inereasing alse, the maxiowm of § over #ooa will be attained jn
this casc at £ i &, .. An example in infinite dimensions| spacts where the set g, . s
comvex is provided by all the Teasible consumption paths obtsined feom an in tial caprital
stock in an economy with a convex technology, i the wsual optimal growth model. In
these cises, the constraint g takes the form of 2 differential {or difference) equation with
imitial conditions, see [4].

Tle., Torall {xq, ag)in Xy < A, (808%) glxy , ag) is onte.

E P'his assuinption is shown to e “generically' satisfied in finite dimensional versions
of theae problemas in [6) under cortain conditions. For n furthe discussion on the existence
of the aperator &, see the remark after the theorem,
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and for any choice of compensating constraint there exists a stutskyHicks - Samuelson
aperator S: Ay x G — (A, X) (the space of linear functionals from A to X)
prven by

8 8.8
.ﬂu,c}sa—ah+a—chag{h. a)
satisfying

Sa, ¢) = %b |r+ %-‘r{é (;::g) —p (%f))
o [y ) ) ) () - ()

twhere the operators, p are defined in (14') below, provided these aperators are well
defined for all (x, ) with y(x, a, £, A) = 0.

FProof. Since g__ is a r-compact subset of X+ by (i), if {x"} is a sequence in
8o.o with f{x", @) — sup, f(x, &), then there exists a subsequence, denoted also
{x*}, converging weakly, i-e., {x"} —" A in g, , [14]. By the Banach-Saks theorem
there exists a subsequence {x"+} such that the sequence of arithmetic means
{xm),

N
- k
converges to & in the norm. By convexity, y™ e g, ., and by concavity of f{-, «),
{»™} is a maximizing sequence also. Since f is continuous, A is 2 maximum on
£ea By (i), ke X+ We denote k by #{a, ¢} also. Uniqueness follows from the
assumnption of strict concavity of f(-, a) on x. Note that, as discussed in footnote
S hising, , .

By [13] (Theorem 1, p. 243) and conditions (ii) and {iii), a necessary condition
for Ala, ¢) to be a maximum is that § = O at (A{a, ), a, ¢, A) for some A == 0 in
C* 1 Now by condition (iv) and by the implicit function theorem for Banach
spaces (see [ 2]) it follows that &a, ¢}, which is the solution of system o above, is
of class €1,

We now derive the S{a, ¢} operator™ For cach {2, ¢je 4, « C,, the first
arder necessary conditions for an optimum are:

and iy =10, 1., glx,a) —¢— 0

b (2)
iy, = 10, i.€., B—IL{::, a, o, A -0

* We shall not distinguish between an operator and irs adjoint.

" Muote that the fact that f is continuous and defined on X, , which is a neighborhood
of X*, replaces the condition in [3] of existence of an interior point of X+,

" The approach used here generalizes the approach of Kalman and Intriligator in [10]
which is done for one constraint and for finite dimensional spaces.
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where, for each fixed (a, ),

bt Xy = G,
e X, w CF = X

so that

N B .

Locally, at the maximum, the differential of (2) can be written as:
et bl
{ﬂ_ng dx + [Eg)da—a‘: 0,

(e 1) o5 1 (s ) e+ (o) o) 1 () )3 + ()
—0, (3)

where
{(% g} rfx] A denotes E A (( %g’] ri'x)

and similarly for

((zzat) 2)

System (3) in turn, can be written as

8 8
- da +
o (58 - [gae e e ”
& roa? . ax! e
(e (5t) ~ (gezal) 4
where as defined ahove
i d . - Y+
3xL:.-§leT|Kf.Xf. "
. )
a:aEL‘ X, %A, x € x CF 5[4, X*)
and similarly
":_IH

EELZ }:1 E AI. A T A —h.'f{X,X*}
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so that for each a, ¢ at the maximum Fia, ) and at the correspanding A,
e .
aa(Lih a, ¢, ) e #(X, XY,

To simplify notation we pow denate (B e} L ar {(f(a, o), a, e, 4) by (e%ixt) 4,
also; by the assumption of existence of Z, {#Ex?) L is mvertible,'?
Thus, by (iv),

i -1 ¥
!rﬂiJ 2 'i J - {d_ag} da | de (5)
o / -} o2 '

T o\we ) \ - ()

By results of inverting a partioned matrix we have

“ [aaxf] I

{% £ ) [ f:z "')

[(Get) +(Gt) o)z ).

< (w8 (1) |

(o)
where

; b i [ -1 i
z-—[Ge) (e t) (o) (®)

From {5) and {6} we obrain

) () 2 () e )
. i ;g 1.4 . B PR - R g 1Y
[(Grt) 1 (G t) (o) 2Ge) () at) e

(7
'* Since X and A are Flilbert spaces and g is convex in the variable &, Jor each da, €] the

operator (#4&cL) will be negative definite at the (x, A) which satisfy the first order
conditions f{x, @, v, A) 0 when x is 0 maximum, and thes (77255 will be mvertible,



COMPAIATIVE STATICS ANL OFTIMAL CEHOICE 4494
o [ i
I 71 we obrain

4"" g r'|2 o 1

P l fat LJ 1;h£)ll Z tfc'f_lelll
R SR T NPT NI N R
- “ i L) I { r’_'cz;J ix 'E'rJ] d {.E.'.r 'I'I.} ( it LJ l '.(('IJ.C.E‘-‘HL.]
(8)
v =—(wt) (502 ©

We now consider the effect of a “‘compensated”™ change in the vector a,
obtained by a change in the parameter £, which keeps the value of the objective
function constant, e, when

o (Lg)ds+ (51) da=

From (2], this implies that at the maxima,

—4 - {;;A‘J dx | {.;;f}du 0. (10)
Also,
de (or)d i (58] da (1)

Hence, by (10} and {11}, when df =0

¢ £
~Ade - S-gda) 4o fda =0 (12}

which implies in particular that when df — 0, the det's are not all linearly
independent. We now choose one of the constraints—say the sh one—to
perform the “compensation,” i.e., to insure that the optimal vector stays on the
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surface f = r, on which df = 0. Then, if ¢ is the i-th component of the vector
£, in component form, {12} can be rewritten ag!

(- ()= (o) 50 (o= (Zr)a).

Thus (12) and (13} wuply that

dc - G; g) da, when df =10 (14}
is
()t (= () ). )

where for each (x, @, ¢, A), p B — €% iz defined by?"

ith place
iy

m .(u,..., 0,; ,ﬂ,...]
iy

*1In a basis of the Hilbert space (. Similurly, locally the de' are a “hasis™ for the
cotangent bundle of O at .
" 1f ¢ is a real number and there is ane conatraint, Fuyuation {13) becomes

d (H )d N2 1) da 1y
- |= a = - |— X
% aﬂg A '-f."a ) R
And, in the clussical case, where @ — p (price), gix,a) = px, ¢ = { {income), x is
consumption, {13 becomes

df — x - dp = A [137)
Mate that the “compensation” has the effect of making the compoenents of dr to he not
all linearly independent nn the surface f = r, For instance, in Eguation (13), o' is u
Function of all de', § # & Mote tht ${dc) = 0 does not imply e = 0; the analog of this
situation in the clagsical case is the fact that &f, f = income, ia not a “free™ real variable

any mote when f = £ since df = x + dp. In the classical consumer case the fact that
Eruation (14}, when df — 0, becommes (14°), is equivalent to the classical eondition thar
de — &+ dp (¢ denotes income) beeommes zero when df = 0; this follows from the fact that
(e} £} — Uin the clussical consumer case {since Fdoes not depend on g), and also
that ¢ in this case i zero (see, for instance, [15]),

g B~ % (=) will be well defined if the conditions ¢ = 0 holds for A N VT
at the maximum, A 3 0 means Alcd = 0 for all < in € In [1] sufficient conditions are
given for the existence of a strictly positive supporting hyperplane (or Lograngian multi-
plier) A Z 0, in a different context.
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and ¢ CF — O (1 = (™) is defined by

¢ A
[ if t=j, /i,
[ if L T B S
A ; ; .
1#1.:!' = T Ijl:l i J1,
‘ﬁ‘:.l =,

and whered = 0if ¢ is in K8

501

Therefore, from (7}, {14} and (14°) (denoling, as usual dv, when df =0, by

dx g g

]
I'J-

et = (Ze1) (G) 2 (G0 eie 14 () )
(S e ) '

and thus, when ¢{de) = 0, one obtains

() (L2 (-u () + 9 (Ze)

tla

()" () G o) ()

So, by (8), (9) and (15) at the maximum we obtain:

a1 et (aat)

R R a
= :_a ,-+ ;:: .r. {lq‘J {.tfn‘EJ - #{L'u"f )J

==l t) 1 (e t) () 7o) (o 2] o

a, €},

which completes the proof.

L)m

L} :

(13)

(16)

M C s an [0, o) space with o fioite mensare on [0, @) given by the density function
A re [0, @) {3 & constant o (0, I} as o [4] and [5], then Tor $ ta he a well defined

continuous operator Trom £y to §y , 8 oecessary and sulficient condition is that

for all r.
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Remark.  Sufficient conditions for invertibility of the operators [8){Ex, A)] o,
and of

1

((Ze) (et) (o))

required in Theorem | can be obtained in certain cases for instance, by direct
cxamination of these operators, which involve first and sccond order partial
derivatives of the functions fand p. For instance when the spaces X, 4 and O are
sequence spaces, these operators will be given by infinite matrices. Conditions far
invertibility of infinite matrices have been studied, Tor instance, by Kantorovich
in [L1]. If X, o1 and € arc spaces of L, functions on the line, one can use Fourer
transform techniques as, for instance, those of [11]. However, invertibility of
operators is a delicate point which requires technical considerations of its own;
in this case, it requires conditions on the above operators {and thus on f and g)
and on the spaces where the problem is defined, depending vn the particular
nature of the model. Ciher technigues to study general invertibility of related
operators are given in [6] for finite dimensional spaces, by use of the Sard
theorem. These latter results can be extended to infinite dimensional spaces,
in certain cases, by oae of an infinite dimensional version of the Sard theorem

[16].

2

T'he classical property of symmetry of the Slutsky Hicks Samuelson matrix
which in this lramework becomes the operator S{a, ¢) in Section 1, is, in general,
not preserved [10], For certain classes of objective functions and constraints,
symmetry of S{a, ©) can be recovered, as seen in the next results. These classes
of functivns have been used in bnite dimensional models of the firm, the con-
sumer, and micromonctary models,

In what fullows we assume that all spaces are Hilbere spaces of sequences,

Prorosimios 1. Asswme the ebjective function f{x, a) has the form
(1) f=yla =]+ f{x)+ fYa)
and the constraints pix, a) lave the form
(i) &' = 8a - x] + g%x) + g%ah i — 1, 2,y

and that the conditions of Theorem | of Section | are satisfied where a e A4 XY,
cc Oy, 8 € RY and f, p* have the same properties as f and g of Theorem |. Then
there exists a unique global C' solution for Problem (1) of Section |, and S{a, ¢} fs
SFmisReFie.
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Proaf.  In view of (£}, (97 and {15), we obtain:

stwa - —[(g=t) (et (e 250 (5 1) (k)

By computing the operator (¢3/éxca) . for the above objective and constraint
lunctions we obtain:

¥+ oAb 0

f":'rﬁa-f' 0 ¥oioAB

Mote that

() o) (e 2 () () ]

is symmetric. This completes the proof.

PropostTioN 2. ader the conditrons of FPreposition |, S{a, ¢} 5 negative
semi-definite if v | T, A8 = 0,

Proof.  Negative semi-definitencss of S{a, o) 15 obtained from the conditions
Tor (i) and {11} of Proposition 1 as follows:
First we prove that

p-[(Z1) + () (ne) 2 (e (4 1) ]

is negative semi-definite,
Let 3 be any vector, and define a quadratic form O — 2'Ds. Let H -
((e2fes®) L), and 7 1% be the symmetric negative square root of £f°1, Define
"R L

where

v B and v o= ff 1z
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Then,
Up =¥y — yulu'u)y tuy
=llxI* —Nall 2wy |2

By the Schwarz inequality [8], (0, = 0. S0, &(a, r) will be negative semi-definite
H (8%éxda) 1. is positive semi-definite since under the conditions of the proposi-
tion (#jdvda) L i diagonal. Mut (#%dxée) L is positive semi-definite  if
y | ¥, A8 = 0. This completes the proof.
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