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COMPARATIVE STATICS OF LESS NEOCLASSICAL AGENTS*

BY

	

GRACIELA CHICHILNISKY AND PETER J. KALMAN"

1. INTRODUCTION

In recent years demand and producer theories have been extended to models
where the economic agents exhibit more complex characteristics than those of
the neoclassical agent.? The optimization problem of these less neoclassical
agents includes cases where the objective functions depend also on parameters ;
there are many (not necessarily linear) constraints, and non-convexities. For
example, agents' preferences among commodity bundles may be parameterized
or influenced by prices as in Veblen and Scitovsky models [6, 3], or real balances
may enter the utility functions [9] . Other models where the objective functions
are parameterized are those of choice under uncertainty-and with imperfect in
formation .

	

Nonconvexities on the side of the constraints (technology) are nat-
urally induced by informational variables ; in models with uncertainty as many
constraints may appear as states of nature .
A natural question concerning the models discussed above is to what extent do

the comparative statics results of the neoclassical theory still apply . In particu-
lar, since it is known that the Slutsky matrix and its properties of symmetry and
negative semi-definiteness are not preserved in general [6], one can, at most, hope
to obtain conditions on the classes of models (classes of objective functions and
constraint functions) in which these properties are still satisfied . 3

Even though by nature comparative static properties are essentially local, the
techniques involved so far in their proofs mostly used arguments requiring con-
vexity assumptions of the objective and constraint functions . Since comparative
static theorems concern the signs of partial derivatives in some neighborhood of
an equilibrium point, these global assumptions place more stringent restrictions on
the objective and constraint functions than are necessary .¢

' Manuscript received April 22, 1975 ; revised February 14, 1977.
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r For example, in neoclassical consumer theory the objective function (utility) is usually
assumed to be concave, the constraint (budget) linear, and no parameters affect the utilities.
In producer models, there is usually only one constraint, and convexity assumptions are in general
made .

' These properties have been recovered for certain separable classes of objective and con-
straint functions in some of these more general types of models, mostly under, convexity assump-
tions and with special restrictions for each particular case [7] .

' Since 1970 there has been an upsurge in the study of local properties of equilibria starting
(Continued on next page)
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Theorems 1 and 2 contain local results about solutions to a general class of con-
strained maximization models ; in Theorem 1 we study generic differentiability of
the solutions and in Theorem 2 we give a generalized Slutsky type decomposition .
The techniques used in Theorem 1 to obtain generic differentiability of the solu-
tions are related to and extend results of Debreu [s"], who parameterizes the
agents by their endowments in a general equilibrium model, and Smale [12] .
We extend those results by considering as paramenters both the objectives and
the constraint functions . However, even though the parameters of the objectives
and constraints include elements of infinite dimensional function spaces, here we
do not use Thom's trans versality theorem as in [12] .

	

The genericity in these
parameters is obtained here by proving a new transversality theorem, which
uses Sard's theorem [1], and with respect to a topology described by the pro-
ximity of the values of the functions and their derivatives, which seems natural
for spaces of economic agents .

	

The results which are valid for compact sub-
spaces of the commodity space, admit an extension to noncompact commodity
spaces if one uses the Whitney topology as, for example, in [12] or [8].

	

The
derivation of the generalized Slutsky operator of Theorem 2 becomes more com-
plicated here than in the usual models because of the many constraints, and the
operator obtained is of a slightly different nature.

	

One reason is that com-
pensation can be performed in different manners here, since there are many
constraints .

	

Also, the existence of parameters induces new effects that do not
exist in nonparameterized models, and the classical properties of symmetry and
negative semi-definiteness are not, in general, preserved [b] .

	

Finally, we con-
sider in this paper, for the case of models with price dependent preferences,
those preferences where the objects of choice are -quantity-price situations"
also called unconditional preferences. An alternative way of looking at price
dependent preferences is where the objects of choice are only quantities, for
a fixed set of prices, also called conditional preferences ; for a discussion, see, for
instance, [3] and [10] . The "compensated" demand functions, however, are
only defined in the case of unconditional preferences [10] : our results apply to
cases of households and firms with unconditional preferences.

	

Propositions 1
and 2 give sufficient conditions for recovering symmetry and negative semi-
definiteness properties in our general framework-

	

Results related to this paper

(Continued)
with the leading article by G. Debreu who introduced tools of differential topology to study,
among others, problems of existence, local uniqueness and stability of equilibria (5] . Independ-
ently, interest in local properties arose from models where there may be many equilibria posi-
tions, for instance, when the utilities cost or production functions are not necessarily conves
(concave).

2. RESULTS

We first prove generic results on local uniqueness, differentiability and Slutsky
type decompositions of optimal solutions to constrained optimization problems
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are contained in [4] .
with parameters entering the objective function and constraints - which can be
linear or nonlinear. This formulation contains the models discussed above,
and also the neoclassical producer and consumer models. Convexity assump-
tions on either the objective functions or the constraints are not required ; the
special cases where the objective function is concave and increasing and the con-
straints are convex yield optimal functions -as opposed to correspondences -
with above properties .
The problem studied here is that of an agent maximizing a constrained ob-

jective

(P)

	

maxf(x, a)

	

subject to

	

g(x, a) = b
XEX

where X is a compact subset of R"+' whose interior is diffeomorphic to a ball in
R°, a e A, b e B, A and B are similar type` subsets of Rm+ and R'+, respectively,
and n > I .

	

An agent is characterized by an objective function f and by a con
straint g .

	

Therefore, the space of all possible agents can be identified with the
product of the space of admissible objectives and constraints .

	

Let the space of
objective functions denoted D be Ck(X x A, R+), the space of maps from X x A
to R+ which are increasing in x and k-times continuously differentiable in a neigh-
borhood of X x A, and let the space of constraints denoted E be Ck(X x A, B),
where k>_2.
We now briefly discuss the topology of the function spaces we consider.

	

Let
Y be a compact ball .

	

Then the space C``(Y, R) can be given the Ck norm topol-
ogy defined by :

IlfIII, = sup {If(Y)I, IDtf(Y)I, . . ., (Dkf(y)L}
>eY

where Djf denotes the i-th derivative of f.

	

Let D denote a CI bounded subset
of D.6	Weshall also consider here the special cases of increasing concave ob
jective functions and convex constraints :

	

Let Do be the space of Ck functions
fdefined on a neighborhood of X x A with values in R' which are increasing and
concave on the variable x e X, and let EocE be the subset of functions of Ck(X
x A, B) which are convex on x E X.

	

Let Do denote D ;1 Do .
In the next result we study properties of the optimal solutions to problem

(P), denoted hf.a(a, b) . Note that hf,a(a, b) is, in general, a correspondence . 7
A solution is called interior if it is contained in the interior of the set X.

THEOREM 1 .

	

For an open and dense set of objective functions f in D, and

' R"* denotes the positive orthant of Rn .
' This assumption on D, which does not imply compactness ofD, could be weakened by the use

of different topologies on D, such as those of [12, 81 .
' In the classical consumer case hf,,(a, b) represents the demand vector, x a commodity bundle,

bc-R* income, and a the price vector. Also, g(x, a)=x.a=b represents the budget constraint
andf(x, a)=u(x) the utility function .
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PROOF :

	

For any g in E, let

be defined by

defined by

For simplicity, denote ~(f, a, b)Ixxso by ~(f, a, b) .
Let B t =X x Bo .

	

Thus,
Off, a, b) e CI- t(B I , Rn x B) .

any given constraint g in E, the interior solutions of problem (P) above define
locally unique CI functions hf-(a, b) on a subset of A x B which contains an
open and dense set . This is also true for the globally defined functions hf.a
(a, b) for f in Do and g in Eo .

~ : DxAxB,Ck-t(XxRI,R"xB)

a,b)(x,~)=(axf+i zr g,g-b)

where ~ e R' .
We first note that for each a, b in A x B, 0(-, a, b) is continuous as a function

on D since, the map

a: C I(X, R) --, Ck-'(X, Rn)

f-
a
ax f

is continuous in the respective Ck and Ck't topologies .

	

Thus, tar is itself a con-
tinuous map.
We now consider the restriction of ~(f a, b) on X x Bo , where Bo is a com-

pact ball of R' which contains the i.'s in the kernel of ~(f, a, b) (x, -) for x e X .g

Let 0 be the set of maps 5 in Ck- t(B t , Rn x B) such that s ,

	

0 . 9	SinceB1 is com-
pact, by the openness of transversality theorem (see [1]), 0 is an open set .

Consider now the restriction of the Ck- t norm topology on the subset I of
C k ' t (B,, Rn x B), where I is the image of D x A x B under 0 .

	

Let 8=,0 n I and
let I inherit the relative topology, and let T be defined as equal to ~ on the domain
of 0, but having 1 as its image.

	

Then 0=0 n I is open in the relative topology
of I and by continuity of V, T- t(0) is also open in D x A x B .

	

Note that V IM
We define ,lr(f a, b) on a subset of X%- R° which includes all x in X and those .2's given by

the zeros of the first order conditions of y(f, a, b)(x, -) for some xE=X 8y (11, (30)1, for all
xEX and for all (f, a, b) in Dx AxB the respective I's in the kernel of ,L,(f, a, b)(x, -) are con-
tained in some compact ball B, of RI .

Let Mand Nbe CI: manifolds, f: M~Na C° map. We say that f is transversal to a point
yeNdenoted by f iit y ifwhenevery=f(x), i . e., xEf-1(y). then DJ'(x) is onto, where Df (x) rep-
resents the derivative of the mapfcomputed at x, a linear map from the tangent space of M at
x to the tangent space of Nat y.

	

A point x in A-1 is a critical point if and only if Df(.r) is not
onto ; x is a regular point if it is not a critical point. y is a critical value if there exists a critical
point x in M with y=f(x); y is a regular value if and only if it is not a critical value (see (11) .
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is contained in the set of elements in D x A x B such that the corresponding in-
terior optimal solutions hf,9(a, b) of (P) define locally a unique C 1 function"°
by the implicit function theorem (since aa

	

ir(f, a, b) is regular at the kernel

of 0(f, a, b) if and only if it is invertible) .

	

Hence, for an open set of objective
functions in D, and an open set of parameters in A x B, the interior solutions of
(P) define locally unique functions which are Ct.
By Surd's theorem, (see [1]) since k>_ 1, the set of regular values of T(h a, b)

is dense in R" x B.

	

Then, for any a > 0, let (q, k) e R" x B be a regular value of
the map ~(f, a, b) with l1q, k1l <s.

	

Define Tt by:

~`U, a, b) = ~(f, a, b) - (q, k) .

Note that ~9(f, a, b) ~ 0 iff (q, k) is a regular value of T(f, a, b) .

	

If f=f-qx,
and b=b-k, then ~T°(f, a, b)=~(f, a, b) .

	

Since X is compact, fcan be taken
to be arbitrarily close tof in the C' norm by choosing s small enough, and simi-
larly, b can be chosen arbitrarily close to b . Therefore, since 0 is a regular
value of TL(f, a, b), then (f a, 5)Eand thus

	

is also dense in
DxAxB.

Iff is concave and g convex, i . e ., iff is in Do and g in Eo=Eo (1 E, then the above
results also apply, proving in this case that the globally defined optimal functions
of the agents are C1 on an open and dense subset of A x B and of objective func-
tions and constraints f and g in Do x Eo .

	

This completes the proof.

Remarks 1 .

	

Note that the results of Theorem 1 are restricted to interior solu
tions of problem (P) ; solutions to (P) always exist by compactness of X.

	

If the
objective function f is required to have all its hypersurfaces (or indifference sur-
faces) contained in the interior of X, then it would follow that all solutions to
(P) are interior .

	

However, since X is compact, this would imply some satiation
of the -aximizing agent.

	

When the choice space is R"+ a standard assumption
is to require that the indifference surfaces be contained in the interior of R"+,
in which case all solutions are interior. This boundary condition does not im-
ply satiation since R"+ is not compact . t t

2 .

	

Let E be a Ct bounded subset of E.

	

Then if the map W of Theorem 1 is
defined instead as :

by

~ :DxExAxB-Ck't(XxR',R"xB)

{f a, b) (x, A) °\af+Aax g,g-bl

1° There might be elements in D x .4 x B such that the corresponding hf,,(a, b) defines a Ct
function, but are not contained in v-i(9) since (alax, 2)~r(f, a, b) may be singular. Also, the
boundary solutions to (P) may not be contained in

" The results of Theorem 1 can be extended to the case where Xis R^', by the use of different
topologies on spaces of Cl: functions, such as the Whitney topology [12, 81 .
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a similar proof would yield open density of the set of objective functions and
constraints in which the results of Theorem 1 are true, instead ofa fixed constraint
9-
We next study existence of a Slutsky-type decomposition for the interior solu-

tions to problem (P) above. Note that such a decomposition can only be defined
in a neighborhood of (a, b) if h(a, b) is a CI function at (a, b) .
Assume k> 1.

	

For a given f and g a necessary condition for x to be an in-
terior maximum is the existence of a 1. in RI such that

The following result is proven in [4] .

THEOREM 2.

	

Let g e E be regular.1z

	

For an open and dense set of objec-
tive functions f and parameters a in DxA, if the corresponding Lagrangian
multiplier A. of (1) is strictly positive, and Z defined below exists,13 then there
exists locally a Slutsky-type decomposition S(a, b) into linear operators, given
by:14

(2)

	

S(a, b) -a h +ab h (ag)

1

	

I. e., ax g(x, a) is onto for all x and a.

axf(x,a)+~a~g(x,a)=0,

and g(x, a) = b .

as h I=to +oh~QCO 9I -

	

af~~

-~~ 8xz L>-1

+ (8x2 L)

	

ox g) ZCjx gl `8xz L)axda
where L(x, a, )., b) denotes f(x, a) +i.(g(x, a) -b),

and 0 and ft are defined as follows :

Z -[(bx g) (azs
L)-1(8x

g)]-1'

i-th place

0' . . . ' 0'1. ,0, . . .,0

1 ' Existence and density of such Z's is discussed in [2] .

	

Generic existence of Z can be proven
following the techniques of Theorem 1 also.

11 Transposes of matrices are not indicated in the statement of Theorem 2.

L)
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~.. -1

	

if qg1i

0

	

if qtr and q01

if r 0 it.r --
a

ot,t=0 ;

	

if beR1,0=0.

Iffe Do and g eRo the above results hold globally .
Note that the term

ab
h(0

t?a g - yaf)

of the decomposition of S(a, b) depends on the choice of the index i through the
operators u and 0. Thus the middle term of the equation (2) depends on the
choice of the particular constraint which is used for the compensation (denoted
by the index i in the definition of the operators) .

	

However, S(a, b) as given by
the first and third expressions, does not depend on the choice of the index .

	

In
the cases of optimization models with only one constraint, the compensation
can be done in only one way; in general, one can choose as many ways of "com-
pensation" as there are constraints, and more : any linear combination of the con-
straints, for instance, could also be used as a compensating parameter, and a
similar proof will follow .

	

The basic point here is that when df=0 (on the sur-
facef=constant), the components of the differential form db are not all linearly
independent .

	

Different choices or representations of this linear dependence (of
which a particular case is that given by the operators 0 and u) would yield dif-
ferent forms of the terms of the middle expression of (2) .

	

When considering
this particular expression in the middle of equation (2), which can be thought of
as a "modified substitution effect", these degrees of freedom in the choice of the
compensating parameter may allow one to adopt a particular way of compen-
sation depending on the type of economic model under consideration and depend-
ing on the properties one wants to study in each particular model.

In this general framework the classical properties of symmetry and negative
semi-definiteness are not, in general, preserved [6] . In Propositions 1 and 2
below, we exhibit some forms of objective functions and constraint functions for
which S(a, b) has these properties under certain conditions . For proofs of the
next two propositions, see [4] .

PROPOSITION 1 .

	

Assume the objective function f(x, a) has the form

(i)

	

f= Y[a - x] + f t(x) +f'(a)

and the constraints g(x, a) have the form
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(u)

	

gt - bt[a - x] + g` t(x) + g11(a)

and that all the conditions for existence of the matrix S(a, b) of Section 1 are
satisfied, y, St e R+ .

	

Then S(a, b) is symmetric when to=n in problem (P) .

PROPOSITION 2 .

	

Under the conditions of Proposition 1, iffc-Do and gEE0 ,
the matrix S(a, b) is negative semi-definite when l+E;).;bt>_0, and where
2=(A 1 , . . ., A) is the corresponding "Lagrangian multiplier" .

Harvard University
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