TRANSAC TIONS OF THE
AMERICAN MATHEMAT ICAL SOCIETY
Yolume 172, October 1972

GROUP ACTIONS ON SPIN MANIFOLDS(1)
BY

G. CHICHILMISKY

ABSTRACT. A generalization of the theorem of V. Bargmann concerning wni-



TRANSAC TIONS OF THE
AMERICAN MATHEMATICAL S0OCIETY
Volome 172, Oerober 1972

GROUP ACTIONS ON SPIN MANIFOLDS(1)
BY

G. CHICHILNISKY

ABSTRACT. A generalization of the theorem of V. Bargmann concerning uni-
tary and ray represcncations is obtained and is applied to the geacral problem of
lifting group actions associated to the extension of structure of a bundle, In parti-
cular this is applied to the Poincaré group ¥ of a Lorentz manifold M. It is
shown that the topological reswictions needed to 1ift an action in # are more

. e 4 g o+ Ao
stringent than for actions in the proper Poincaré group .PI. . Similar results hold
for the Euclidean group of n Riemannian manifold.

1. Introduction. We are concerned with some general rechniques related to
the question of lifting group actions and with the application of these results ta
the Poincaré group of a general Lorentz manifold admitting a spin structure and
the Fuclidean group of a similar Riemannian manifold.

Bargmann [1] considered the general case of lifting a group action from a pro-
jective Hilbert space H to a Hilbert space H. We shall prove a result which in-
cludes this as a special case (provided we accept a result of Wigner [21]). Our
method was inspired by the exposition of Simms [19],

Using this result we prove a lifting theorem for a general bundle obtained
from an extension of the structural group of a bundle. In doing this we use a theorem
of Hacfliger [10], who considers conditions for the existence of extensions of
structures, and in particular for the existence of spin structures. We establish the
number of such possible extensions. Our result includes also the Lorentz casc
{cf. Bicheeler [2]). As far as we know, the prablem of lifting group actions on
spin manifolds was first suggested by Marsden [13].

We conclude, for example, that if P is the Poincaré group of a Lorente mani-
fold M and ?’T' is the component of the identity then there is no topological ob-
struction to lifting an action of isometries of ¥+ to an action of corresponding
spin transformations (other than M admits a spin structure, i.e., w,, the second
Stiefel-Whitney class should vanish). However, to include the full group ¥ we
require additional topological restrictions, namely that M have a unique spin struc-
ture, that is H(M, Z)=10

We shall prove the results in a very general context, However, simpler proofs
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are possible in the special case of spin manifolds; cf. Chichilnisky [4] and Cher-
noff-Marsden [3].

1 express thanks to Paul Chernoff, A, Taub, R. Sachs, M. Humi and the referec
for useful remarks, and especially to my thesis advisor, Professor ]. Marsden who

eollaborated on several parts of the paper.

2. Lifting group actions. Let G and F be Lie groups with Lie algebras LG
and LF respectively. A factor set for (LG, LF) is a bilinear skew symmetric map
@: LG % LG — LF such that wix, [y, 2]) + wlz, [x, 1} + wly, [z, x1) = 0 for all
%, y, z € LG. The factor set w is trivial if wlx, y) = T{lx, y]) for a linear map T:
LG — LF. The quotient group of the additive group of factor sets by the trivial factor
sets is, by definition, HYLG, LF). Obscrve that other definitions are possible and
are not all the same (cf. Jacobson [L1]). As usual, we denote the homotopy groups
of a space A by = {4) and the cohomology groups by H(A, C), where € is the

coefficient group.

Theorem 1. Let $ and 9 be topological groups and 11: 8 — § a continuous
bomomorphism. Let F=T17 Yel, & = identity, and suppose that F is an abelian
Lie group, Assume further thar 11 & ¥ bas local cross sectiuns, Letl & be n

continunus homorphism of & (connected and) simply connected [inite dimensional
Lie group G inlo i, Assume that H (F) = 0, iz 2
If WNLG, LFY=0 then there exists a homorphism & G — & such that the

following diagram commutes:

I

(We call & a lifting of ¢.)
If F is discrete then & is unigue. More generally if I lies in the center of
&, the number of liftings of ¢ is the number of continuwous bomomorphisms of G

nto F.

Remark. The condition of the existence of the cross section is not necessary
when ® and § are Lie groups (cf. Steenrod [21, p. 33]). However, if & and 4 are
topological groups, the condition is necessary so that 8 will be a bundle over §
and so that obstruction theory may be applied. In the case that 3 is finite dimen-
sional this condition is automatically fulfilled (cf. Steenrod (21, p. 218]). There
are examples in the infinite dimensional case where there are no local cross sec-
tions. On the other hand, D. G. Ebin [6] has proved, for example the existence of
local cross sections for some interesting infinite dimensional manifolds related to

the topological group of diffeomorphisms of a manifold.
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(ne obtains Bargmann's result in case that & is the unitary group of a Hilbert
space H and § that of the corresponding projective space ﬂ', d and § being equipped
with the strong operator topology. These are casily seen to be topological
groups (Simms [19] asserts, incorrectly, that they are not: it is the full general
linear group of / which is not a topological group), In this case it is easy tosee
the existence of a local cross section. By Wigner's theorem F is the circle 5l =0
LI =R, This case corresponds to that of quantum mechanics.

Proofl of Theorem L. Since 'rrll:(?ﬁ =0 and NJ{F} =0, i > 2, there is no obstruc-
tion to lifting ¢ to a continuous map, say g ‘cf. Steenrod [201). Now write, for .

b e,

plab) = gladglbiila, B)

where fla, b) - glbi~gla)~ lglab). Thus j: Gx G — F and | is continuous. More-
over, j is a factor sct for (G, F) as is easily checked, By Simms [19, Theorem 3,
p. 151, there is a continuous map k: G — F such that &(xy) = 7, IRk G)

If we set gla) — glatkla) then it is casily checked that & is a homomorphism.
The assertion on the number of liftings is easy to check. O

We would also like to consider the case in which @ is not connected but the
component of the identity G of G is simply connected. In subsecquent applications
we will have F = Ez so for simplicity we shall consider only the case of discrete
F*. Howewer, some additional algebraic assumptions are required.

We shall illustrate the procedure when G has two components. The general
case is similar but the hypotheses become more complicared. Ler m: 8 0 beas

above, We have

Corollary. Assume F is a finite abelian group and let G =G U gG with G,
the component of the identity, simply connected. Assume that g 2-e. Let ¢b: G —
§ be a continuous bomomorphism and suppose that for some a € F 4 = 7~ Halg)),

2
a- = 8,
Then there is a unique lifting. b of ¢ which is @ bomomorphism of G into 3

ard a{gjl = (1,

Remark. The cohomology condition on G disappears since LF = 0 in this case.
One should think of g and @ as sparial reflections or time reversal.
Prool. As in Theorem 1 we get a unique lifting b such that @ on G, isa

homomorphism and dlgl = @, To show ¢ is a homomorphism, consider

e Gpox G, —F, e, b)= b))~ Lhla)~ lq_._b[afa}_

For a=e, b =g we obtain e, g) = ¢ so ¢ is always ¢ by continuity. Next con-
i ) G
sider ¥ on g X GB’

i G_ox G, — T, Uet, b) = ) Lgla) = blab).
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For a=b =g we obtain yrig, g} = ':1_1&"1{5(6} = ¢, Thus i is constant on G x 7
and so ¢ is a homomorphism. O

If F= 1'-2 and /A is the other element in F;ﬁ{g} then if, as above, F lies in the
center of 9, then B? = & alse, so we have two possible lifting= of .

For a corresponding result in the quantum mechanical case, see Wigner [22],

3. Extension of structure. Let B be a principal fiber bundle over a manifold M
with structural group a Lie group €. Let p: I — G be a homomorphism of a Lie
group H onto G. By a p extension of structure we mean a bundle B over M with
structural group H and a map $: B — B such that the following diagram is commuta-

tive:

Sxp
Bxy——Bx(g
; l*
b

|

f—— B

Ny

M

where r denotes right multiplication, This means, in effect, that for 5 € B, both

s and 5{s) lie over the same poine, and that § restricted to a fiber is equivalent

to p. Two reductions are equivalent if the corresponding bundles over B are equiva-
leat (cf. Steencnd [21]).

In case B is the principal tangent bundle of an criented Riemannian manifold
with structural group G = SO(r), and H = Spin{n) is the universal covering group
(n > 2), we call B a spin structure, This is the definition in Milnor [16]. See also
Crumeyrolle [5] and Chernofi-Marsden [3] for equivalent definitions. The definition
may also be given in terms of associated vector bundles as in Palais [18, p. 92].
Thus if Spin(n) acts faithfully on a complex space C* (i.e., we have a faithful
representation), We can construct an associated vector bundle of spinors. (For example
for n =3, Spin(3) = 5U(2) acts on C7? for “'spin 1", See Steenrod [21]. The exis-
tence of a spin swructure then means that we can find a system of spin coordinate
changes which cover the corresponding coordinate changes of tangent vectors, Teo
include reflections we can, if we wish, enlarge the structural group to O (n) =
S50(r) = 2-? with the replacement of Spin(r) by Spin(n) = Ez'

In case M is an oriented time oriented Lorentz manifold the strucrural group
for the tangent bundle is the restricted Lorentz group L | with universal covering
group SL (2, C). Two associated vector bundles are C? (Weyl spinors) and C*
{dirac spinors). This case is topologically very similar to the Riemannian case.

Macthemarically it is most convenient to work with the principal bundles, Ae

the end, however, we will translate the result inte the language of vector bundles.
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Haefliger in [10] found necessary and sufficient conditions for the existence of
a spin structure. P. Chernoff has given an elementary proof; cf. [3]. The same re-

sults are valid in the Lorentz case, cf. Bichteller [2].

Theorem 2 (Haefliger). Let B be a principal fiber bundle over @ manifold M
with structural proup G, a connected Lie group.

Let p: H— G be the universal covering group of G

Let F=p=Ye). The obstruction to baving a p-extension of structure is a cer-
tain element of HYM, F).

If one examines the definitions we see that finding an extension means lifting

frof:M— €, such that the following diagram commutes:

where € and C; are the classifying spaces for H and G. This is an obstruction
problem and the obstruction lies in HR LM, nﬂ(ﬁﬂ', n> 1, where F is the fiber of
Cy — Cg. But since nﬂ{F] =0, n > 2, the obstruction lies in HZ(M, WI{?TJ =
HX(M, F). Also, the number of liftings equals the number of elements in
HY M, 7 (F)) = #'(M, F). (Cf. Steenrod [211.)

So we have that: The number of inequivalent extensions eguals the number of
elements in HI{M, Fl,

4, Lifting bundle maps. Let now &, H be Lie groups (not necessarily connected)
and p: H —+ G a homomorphism with F = p~!{e)} commutative. Let B be a bundle
over M with structural group G and 5: B — B an extension of structure,

Using Cech cohomology one sees that we can represent the bundle 5: B — H-

as an element ¢ of HI{B, F) (see the proof of the following lemma).

Lemma. A bundle map [: B — B lifis to a bundle map [: B — B iff {*(c)=c.

The number of such liftings equals the number of elements of F.

Proof. Let 1U,] be a trivializing open cover of B for the bundle 3: B — B;
thus e« £ H](H, F) assigns to U. M U]_. a coordinate ransition map [ v~ L'J.—r F.
Locally B|U, = U;x F. Then [ is defined by [ (x, @)y = {ftx), @), . The fact
that [*(c) = ¢ means just that | is well-defined.

To show that | is a bundle map we must show that, on the fiber Ex over X £
M, 7 acts as an element of H. Consider 5~ I[BI 7 U} which will be part of the
fiber Ex. Now [ acts on 5'_1{Bx N U;) by some b, € H since [ acts on B, by a
specific g € G. By continuity, [ acts on B by a specific b € H (note B, need

not be connected).
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We could as well have ser [ (x, &y, = (fl=), b. c;r.)”_ for fixed & € F. This
T T
would give another bundle map since F is abelian (Steenrod [21, p. 40]). The lem-
ma follows.

Thus we obtain the following resulr.

Theorem 3. lLet B, B be as above, and let § be a topological group of bundle
mappings f: B — B such that {*(c) = c. Then the bundle mappings [: B — B
covering elements af 1 form a group and there is a projection S — 8 with fiber
E.

If there exists a local cross section of m: & — §, we can apply the results of
§1 to this situation. Theorem 3 plays the same role in Theorem 1 that Wigner's
theorem plays in Bargmann’s theorem. In applications below, § will often be a Lie
group and F discrete, so that ® will be a Lie group as well as local cross sections
will be automaric.

If 4 lies in the (parh) connected component of all (homeomorphic) bundle maps
f: B— B then [*(c) = ¢ because [ is homotopic to the idearity. In general, f*(c)
need not be ¢ as simple examples show (see Chichilnisky [4]). A sufficient condi-
tion is that HYB, F) has exactly one element representing a p-extension of seruc-
ture which means that the p-extension is unique. By Theorem 2 {in case G is con-
nected) this is the same as HYM, F}= 0. (c ¢ H(B, F) represents a p-cxtension
of structure if, for each x ¢ M, i*(c) e HI{BX, F) represents the covering p: H — G
where {: B, — B is the inclusion).

Thus, if B has a unigue p-extension of Structure then any buudle map {1 B — B
may be lifted to a bundle map [: B — B.

5. Spin manitolds, and the Euclidean and Poincaré proups. Let us now tran-
scribe the above results to the special case of a spin manifold. We teeat the Euclid-
ean case first, Thus, let M be an oriented Riemannian manifold. Let Spin (#)
(where = =dim M) act faithfully on a complex vector space E. If M is a spin mani-
fold then we obtain an associated vector bundle w1 E — M with fiber (locally) equal
to E. In this case F = ?.'2 and 1 is a Lie group, by [17].

Let {: M — M be an orientation preserving isometry, so T/, the tangent of [,
induces a bundle map on the principal tangent bundle. The lift T to the principal
Spin (#) bundle induces a map ,? E — E such that ,Fcu:ﬂ.rcrs i
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and, moreover, in local vector bundle charts about m € M and f(m), respectively,
the restriction ﬂ E_ is an clement of Spin(n) covering Tf(m} € 50(n). Conversely,
if we have such an _?'then II_"irn:lll.v::vs's a lift of Tf on the principal level. Ler us call
{ a spiner transformation of [,

We briefly mention that this problem arises naturally when symmetry groups of
quantum mechanical systems with spin are studied; the Hilbert space H being the
L., sections of the bundle E. Namely, Frcprcacnts the transformation of spinors
cm:es:pnnding to the coordinate transformation ) the cransformation of states be-
comes W —s [oth of !, a unitary transformation, b € H. See Chernoff-Marsden [3]
for more details,

K E is replaced by E, the bundle obtained by taking the projective space E'r
over each point, then it is not hard to see that any such { will have a lifting. (In
thizs case, however, Theorem 3 is more special than Wigner's theorem and dees not
follow from it.) Also we cannot use Bargmann’s theorem to lift actions of isomerries
because sections of I are not the same as clements of fi.

‘Thus we have proven the following: if ¢ is an action (i.e., representation) of
@ simply connected and connected growp G on e spin menifold M by isometries,
then o lifts uniguely to an action ¢ consisting of spinor transformations.

Note that each lg) for g £ & is necessarily orientation preserving and
Tdlghte = ¢ since G is connected.

Similar resules hold for isometries of a Lorentz manifold. It is easy to see that
the set of isometries J of a Lorentz manifold form a Lie group, Using canonical
coordinates, we see that 1X| Lyg= ol, f.3 = Lie derivative with respect o the
vector field X is contained in the Lie algebra of G =s0l3, 1), where g is the Lo~
rentz metric. & is finite dimensional, and so using a result of Palais (cf. Kobayashi-
Nomizu [12, p. 3071} it follows immediately that T is a Lie group.

It can be argued {cf. Geroch [B]) that a physically acceptable Lorentz manifold
M should admit a spin structure; w, =10, GGeroch [8] has shown (and it is not hard)
that this is equivalent to parallelizabilicy of M.

We now examine a theorem that requires a unique spin structure. Consider firse
the Riemannian case. If we have an extension from S0{n} to Spin(r) we also have
an extension from Ofn) = S0(n) = ?42 to Spinin) x ?Jz. We shall thus enlarge the
structural groups so that orientation reversing isometries may be considered. The
clement of the cohomology group representing the reduction does not change. By
the Enclidean proup & of M we mean the group of all isometries of M. It is a Lie
group [17]. Let Eﬂ be the identity component of &, We have for a spin manifold
M:

Any [ & 'E*D may be lifted to exactly two Spinor transformatinons J-IF'

Note. If ¢ is not simply connected this is not true. Consider, for example,
the action of SO{3) on M = R, Here the spin bundle is R3 « €2, or as a principal
bundle, R?  SU(2).
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If M bas ¢ unigue spin siructure, i.e,, Hl{."l-f., 22} =0, then any [ € G lifts to
exactly two spinor fransformations, The corollary to Theorem 1 also applies. For
example, suppose SO(n)x £, = Olr) acts on M and M has a unique spin structure,
Fix g € O(n), gz = e, Thus @ig)’ = e and if @lg) is like a reflection we would
expect that the two lifcings of ¢lg) to spinor transformations also have squares
£. Then the action lifts as in the corollary (to two different actions of spinor trans-
formations ).

In the Lorentz case we similarly enlarge the structural group from Ll tae L and
define the Poincaré group P as the group of all isometries with EFHr', the component of the
identity. As above, it follows that P is a finite dimensional Lie group. Elements
of EPT always induce spinor transformations on M bur if we want every | € P to in-
duce a spinor transformation, we need to require that M have a unique spin structure;
Hlm, ?.2} - 0. Similarly we have results for actions of groups as above (there is a
more or less obvious analogue of the corollary to Theorem 1 which would hold for

four component groups like the standard Poincaré group).
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