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Abstract

We study the introduction of new assets that are defined in expected values rather than state by state.
Individual default emerges naturally in an economy where such assets are introduced without completing all
contingency markets. We further provide conditions under which individual default is propagated endoge-
nously into a collective risk of widespread default in general equilibrium. We prove existence of a general
equilibrium with endogenous uncertainty.
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1. Introduction

New financial instruments are introduced every day including indices, derivatives and innova-
tive forms of government debt. They help manage risk and improve economic welfare. However,
they can also increase macroeconomic volatility. The complexity of contractual obligation within
a market can transmit individual risks and amplify them into correlated or collective risks. There
are trade-offs arising from the gains and the losses created by financial innovation. This article
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shows the connection between financial innovation and default, and it focuses on the propagation
of default in complex markets.

Markets can magnify risk. As new assets are introduced, a creditor who is a victim of default in
one transaction is unable to deliver in another, thereby causing default elsewhere. In this manner
default by one individual leads, through a web of obligations, to a large number of defaults. Since
new instruments create new webs of obligations, financial innovation is the precipitating factor.
The transmission of default from one trader to another and from one market to another transmits
individual risk and magnifies it into collective risk. Default by one individual leads to a collective
risk of widespread default.

We introduce a formal framework based on individual and collective risk. We show how
financial instruments that are introduced to manage individual risk often increase collective risk.
The newly created uncertainty does not originate in nature, but from market forces. It is endogenous
uncertainty, and is best formalized by a set of simultaneous decisions that affect market behavior
as in general equilibrium analysis.1

Precisely how does financial innovation lead to collective default? We start from a large econ-
omy with an incomplete set of assets, where agents face individual risks. A new asset is introduced,
whose payoffs are defined in terms of expected values rather than state by state. We call these
‘statistical assets’; similar assets have been studied in Arrow and Lind (1970) and Malinvaud
(1972, 1973), and we denote them Arrow–Lind–Malinvaud (ALM) assets. A typical example is
provided by insurance contracts, which are valued based on their expected value. Such assets exist
in large societies because of the inherent difficulties of dealing with contracts whose payoffs are
contingent on each individual’s state,2 such as those in the Arrow–Debreu model. The next step is
to show in Section 3 how individual default emerges with such ALM assets, and how individual
default is propagated and magnified into a collective risk of widespread default once the new asset
is introduced.

Since the value of a newly introduced ALM asset is determined in terms of statistics this creates
states of default. For example, in Malinvaud (1972), the statistic is the expected number of people
who are ill, and the random variable is the number of sick people. As the population size increases,
the law of large numbers predicts that the random variable representing the number of sick people
converges to a fixed proportion almost surely. Therefore in the limit, but only in the limit, insurance
that is provided at actuarially fair prices – expected value – matches premium precisely to the
insurance payments. However, when the economy is large but finite, no matter how close we are
to the limit, the law of large numbers does not operate exactly. Therefore insurance contracts
designed to deal with an exact proportion of sick people will not be able to cope with actual
payments in those cases where the realized numbers exceed the limiting proportions. Insurance
contracts offered at actuarially fair values (even with a premium) promise payments that exceed
physical endowments, with small but positive probability. This is how default arises when ALM

1 The concept of endogenous uncertainty refers to uncertainty that depends on economic behavior along with nature’s
moves. Chichilnisky and Wu (1992) provided the first proof of existence of a market equilibrium with endogenous uncer-
tainty, see also Chichilnisky and Heal (1993), Chichilnisky and Gruenwald (1995), Chichilnisky (1996) and Chichilnisky
(1999). Kurz (1974) defined a research agenda of endogenous uncertainty. Recent studies on this topic include Svensson
(1981), Chichilnisky, Dutta and Heal (1991), Chichilnisky (1996, 1999), Huang and Wu (1999), Kurz (1994), Kurz and
Wu (1996), and Wu and Guo (2003, 2004).

2 Cass et al. (1996) demonstrated that an appropriate combination of Arrow securities and mutual insurance policies
can achieve efficient allocation in a world of individual and collective risks. However, in the real world there may not exist
a complete set of such assets. Once we depart from the complete market economy of Cass, Chichilnisky and Wu (1996),
default will occur.
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assets are introduced.3 Default is a typical problem in large economies with individual risks, since
in such economies it is standard to use statistics to describe the characteristics of a group.

The next step is to show how individual risk, which in the limit is a statistically insignificant
event, can be propagated and magnified into a major widespread default. Once default occurs the
complexity of the web of trades within the economy determines how widely it spreads, and the
total amount defaulted. The main result is Proposition 1 in Section 3, which proves the existence of
a general equilibrium with default when agents recontract trades in the default states. The ‘default
states’ are collective states that are defined following the introduction of the ALM asset; each
represents endogenous uncertainty, namely uncertainty that is generated by the functioning of the
economy. In Section 4, we show that in an open set of economies called ‘complex economies’,
individual default leads to a widespread default no matter how large the economy is, i.e. no matter
how close we are to the limiting economy. Proposition 2 shows that in a ‘robust’ set of large but
finite complex economies, there exists a set of collective states with positive probability each,
where an overwhelming majority of the households in the economy default. Following the main
results we show examples of economies where the expected level of default increases with the size
of each (finite) economy, although at the limit, by the law of large numbers, there is no default.
Propositions 3 and 4 and Example 4 in Section 5 establish that the expected value of default may
exceed any bound as the population size increases, no matter how close the economy is to its
limit, and that the probability of default may decrease as more financial reserves are required.

Appendix A provides the mathematical proofs, and Section 6 concludes the paper.

2. Risk: individual and collective, exogenous and endogenous

Uncertainty is represented by random variables; each realization of the random variable is called
a state. It is customary to refer to ‘collective’ and ‘individual’ risks by defining ‘collective’ and
‘individual’ states. Collective states are realizations of random variables that affect all individuals
of the economy, such as an earthquake. They are described by a list of all individuals’ states, which
may or may not be correlated. An individual state is instead a realization of a random variable
that affects one individual at the time, such as an accident or illness.

2.1. Exogenous individual risk and endogenous collective risk

We introduce here a second classification of risk, distinguishing between exogenous states,
which describe nature’s moves, and endogenous states, which describe those events that depend
on endogenous behavior and cannot be predicted with certainty by the agents of the economy.

Combining the two classifications we use exogenous collective states to describe moves by
nature that affect all individuals in the economy. These are the only type of states considered by
Arrow (1953) and Debreu (1959). Exogenous individual states are also nature’s moves, but they
affect only one individual at the time. These are the states considered in Arrow and Lind (1970)
and Malinvaud (1972, 1973).

In this paper we explore an important case where individual and collective risks are simul-
taneously determined. The connection between individual and collective risks is mediated by
economic behavior.

3 Different ways to initiate default were studied in Dubey and Geanakoplos (1989), Zame (1993) and Dubey et al.
(2005).
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Fig. 1. Classification of Risk. Assets introduced to hedge individual risk increase collective risk.

Assume that the economy is large but finite. It would be cumbersome to create contracts that
depended on the states of each individual, because the lists of all individual states would be too
numerous. For example in an economy with 100 individuals each of whom can be in two states
(healthy or ill) a complete list of all possible states of each individual at the time contains 2100

elements (see Malinvaud, 1972, 1973). Clearly, assets that promise payments contingent on such
long list of states would be impractical. Therefore in large economies it is natural to observe the
introduction of assets that promise payments based on statistics rather than state-by-state.

We show below that the introduction of a statistical asset of the Arrow–Lind–Malinvaud type
lead to new states of default. Furthermore, and separately, we show later that the complexity of
contractual obligations in the economy transmits and enlarges this risk into states of collective
default.

In other words, we show that the introduction of certain assets to deal with individual risks
increases collective risks. Although the individual risks are exogenous, depending on states of
nature, the new collective risks are endogenous, depending also on economic behavior such as
how many agents trade with those who defaulted. We may summarize this observation by saying
that assets introduced to deal with exogenous individual risks create new endogenous collective
risks. Fig. 1 illustrates this observation.

2.2. An economy with individual risk

This section formalizes a general equilibrium economy with individual risk and default, using
Malinvaud’s (1972, 1973) model as a benchmark. Our economy differs from Malinvaud’s in that
he considers only one agent type and we consider many. In addition, we also formalize later
the concept of default. First we establish the notation. Consider an exchange economy with N
consumption goods, indexed by n = 1, . . . , N with the Nth good as the numeraire (pN = 1).
There are H households, divided into types indexed by i = 1, . . . , I, and Hi households of type
i, so that H =∑i Hi.

Each household faces the same set of S individual states, indexed by s = 1, . . . , S. Let the
set of collective states be denoted by Ω = {σ : σ = (s1, . . . , sh, . . . , sH ), sh = 1, . . . , S}, which
consists of all possible lists of the individual states for the H individuals, with SH elements. Let
s(h, σ) be the individual state given by the hth component of the collective state σ, and ris(σ)
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be the proportion of all households of type i for whom s(h, σ) = s. Then
∑S

s=1 ris(σ) = 1. Let
ri(σ) = (ri1(σ), . . . , riS(σ)) be the vector of the proportions of households of type i among S
individual states for any given collective state σ. Then ri(σ) ∈ ∆, the S − 1-dimensional simplex.
Similarly let r(σ) be the proportion of households of all types for a given collective state, r(σ) =
(r1(σ), . . . , rI (σ)) ∈ ∆I .

Let RH be the set of vectors r(σ) when σ runs over Ω, then r(σ) ∈ RH is called an aggregate
collective state because it is defined only by providing the proportions of individuals who are
in each state (for each type), and does not contain any information about the identities of the
individuals themselves. RH is contained in ∆I and has

A = Xi

(
Hi + S − 1

S − 1

)

elements. Note that the probability ΠH (r) of the aggregate collective state r on RH can be nonde-
generate and arbitrary. Let us show its property with an example in which RH has H + 1 elements,
and ΠH (r) is defined for these H + 1 elements.

Consider the case when there is only one type (I = 1). For example, when there are S = 2
individual states, say, sick or healthy denoted by 0 or 1, there are 2H collective states denoted by
σ ∈ {(s1, . . . , sH ), sh = 0 or 1}, with H as the number of households in this economy. Let us be
more specific and set H = 4. Then σ = (1, 0, 0, 1) is an example of collective state with r0(σ) =
1
2 , r1(σ) = 1

2 and
∑1

i=0 rs(σ) = 1, as described above. Hence r(σ) = (r0(σ), r1(σ)) = ( 1
2 , 1

2 ) ∈ ∆.
The set of aggregate collective states is represented by RH = {(0, 1), ( 1

4 , 3
4 ), ( 1

2 , 1
2 ), ( 3

4 , 1
4 ), (1, 0)},

which is contained in ∆. This set has

A =
(

H + 1

1

)
= H + 1 = 5

elements. When the individual risk is independently distributed, we can find the correspond-
ing probabilities of aggregate collective states: ΠH (0, 1) = 1

16 , ΠH ( 1
4 , 3

4 ) = 1
4 , Πh( 1

2 , 1
2 ) =

3
8 , Πh( 3

4 , 1
4 ) = 1

4 , Πh(1, 0) = 1
16 .

The definition of individual risk, as in Malinvaud (1972, 1973), does not require that the indi-
vidual probabilities be identically and independently distributed (iid) random variables, although
iid’s certainly satisfy our definition of individual risk. The following definition allows a wide class
of populations of random variables in which correlations may exist between individual’s random
variables, provided that as the population increases in size all collective risk disappears, or, in
other words, in the limit the probability distribution over collective states is supported on a single
point. Formally, the concept of individual risk means that the proportion r∞

is of type i individuals
in state s (which is generally given by a set describing all collective risks) is actually a singleton
with probability one in the limit. In other words, individual risk means that in the limit there is
only one state of aggregate collective risk in ∆I .

Definition 1. An economy is said to have individual risk if as H → ∞, ΠH (r) → Π∞(r) where
Π∞(r) is a point distribution on ∆I namely Π∞ is a degenerate distribution concentrated on one
point r∞ ∈ ∆I, Π∞(r∞) = 1.

In our previous example (I = 1) as H → ∞, ΠH (r) → Π∞(r) with Π∞(r) = 0 for r �=
( 1

2 , 1
2 ). In this example, Π∞(r) is a point distribution on ∆ concentrated on r∞ = ( 1

2 , 1
2 ) and

Π∞( 1
2 , 1

2 ) = 1. In other words, with individual risk only one aggregate collective state will occur
with probability one in a large economy as H → ∞.
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Let Πσ be the probability of the collective state σ. The following anonymity assumption is
required so that identities of individuals do not affect the nature of risk faced by them:

Assumption A1 (Anonymity). r(σ) = r(σ′) implies Πσ = Πσ′ .
The von Neumann–Morgenstern utility function of household h of type i in terms of collective

states σ is

Wi(xi
h) =

∑
σ

ΠσUi
s(h,σ)(x

i
hσ) (1)

where xi
hσ ∈ RN+ is the consumption vector. All households h of type i have the same endow-

ment ei
sr = ei

s in any aggregate collective state r and individual state s, and the same probabilities
ρis for each state s.

In addition to A1, we also need the convexity assumption for the study of the properties of a
general equilibrium:

Assumption A2 (Convexity). Individual utility functions U(·) are concave.
The von Neumann–Morgenstern utility can also be written in terms of aggregate collective

states r or individual states s:

Wi(xi) =
∑
r∈RH

Π(r)
S∑

s=1

risU
i
s(x

i
sr) (2)

or

Wi(xi) =
S∑

s=1

ρisU
i
s(x

i
s) (3)

where xi
s ∈ RN+ is the consumption of a household of type i in individual state s, as explained in

the Appendix.

3. A market with default

3.1. How does default occur?

As already noted, in a large but finite economy, excess demand may fail to be zero at some
aggregate collective states r ∈ RH with positive probabilities. This is because there are states r
where the traders’ promises exceed physical constraints. Similarly, there are states r where the
insurer may fail to deliver on its promises. The purpose of this section is to formalize how defaults
occur before recontracting is negotiated in a finite economy E.

The aggregate collective states give us all information needed to find out whether default
has occurred without recontracting. For each aggregate collective state r ∈ RH , households face
a price vector pr ∈ RN and choose xi

sr, the demand of households of type i in the aggregate
collective state r and individual state s. It is derived from maximizing their utility function (2)
over the budget set of feasible xi

sr satisfying

pr(x
i
sr − ei

s) = vi
s (4)

where vi
s is the net transfer of numeraire good from the insurance contract or the ALM asset to

households of type i in state s = 1, . . . , S.
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For each price vector pA = (pr)r∈RH ∈ RNA, the excess demand correspondence ξi
sr(pr) has

typical elements xi
sr − ei

s, and the aggregate vector of exact (actual) total excess demand is:

xr(p) =
∑

i

Hi

S∑
s=1

risξ
i
sr(pr), (5)

where ris is the proportion of individuals of type i in the individual state s within the aggregate
collective state r.

Definition 2. There is individual default in state r at equilibrium prices p without recontracting if
some coordinate of the aggregate excess demand

∑
i,s Hiris(ξi

sr(pr)) is strictly positive; r is then
called a state of individual default without recontracting.

The set of all individual default states without recontracting is denoted by Ψ . Specifically from
now on we consider for each r the difference between the receipts from insurance payments, and
the total premium collected is:

M(r) =
∑
i,s

Hirisv
i
s, (6)

where vi
s is the transfer from the insurer to a household of type i in individual state s. Here M(r)

can be considered as a deviation from Walras’s Law when recontracting is not yet allowed. The
insurer is a (private or public) company who is risk neutral with an initial endowment e, the same
in all states, and a utility function W(y) =∑r Πryr, where y ∈ RNA as in Definition 4 below,
where W(y) denotes the expected return of a risk neutral insurer.

Definition 3. Any aggregate collective state r with M(r) > 0 is defined to be a state of insurance
default.

The set of insurance default states is denoted by Γ . We also write ΓH and DH to indicate their
dependence on the population size H. Let ∇ be the union of the sets Γ and Ψ . This set is the set
of all default states. In the following example we demonstrate how default occurs in an economy
with ALM assets, in which ∇ = Γ .

Example 1 (An Economy with Default Risk). There are I = 3 types of households, H of each,
three goods, N = 3, and two states of individual risk for each household, S = {1, 2}. Assume that
for each i and all s, individual risk is defined by ρis = 0.5, and that individual risks are identical
and independently distributed random variables. H is assumed to be even so that H/2 is an integer
and there exist aggregate collective states with ris = 0.5. The utilities of the agents are:

Wi(xi) =
2∑

s=1

ρisU
i(xi

s),

where Ui is state independent and Cobb–Douglas (the same for all s), xi
sn is consumption of good

n by the ith type of households in state s and xi
s = (xi

sn). When consumption of good m is state
independent it is denoted xi

m. Endowments of households of type 1 and 3 are state independent;
they are denoted e1 = (0, 1, 0) and e3 = (1, 0, 0). Type 2 households have different endowments
in state 2, the unfavorable state, than in state 1, the favorable state: e2

2 = (0, 0, 0) and e2
1 = (0, 0, 2).

This implies that there are 2H collective states denoted by σ in Ω (rather than 23H ), because only
agents of type 2 face individual risk. There are A = H + 1 aggregate collective states denoted
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by r in R, each identified by the proportion of agents of type 2 who are in state 2. The utilities of
type i households Ui : R3+ → R are:

U1 = 4 ln x1
1 + ln x1

2, U2 = 1/2(4 ln x2
12 + ln x2

13) + 1/2(4 ln x2
22 + ln x2

23),

U3 = 4 ln x3
3 + ln x3

1

The market is incomplete so far because there are no assets to deal with the risk faced by the
second type of household.

An ALM asset is now introduced, i.e. a set of transfers across different states with expected
value equal to zero. We now compute an equilibrium of this economy, as defined above. Let
p = (p1, p2, p3) and assume that good 3 is the numeraire, p3 = 1. Type 2 wants to purchase
insurance offered by the insurer, called agent type 0: type 2 pays q units of the numeraire (good
3) in both states and receives 1 unit of good 3 in the unfavorable state (s = 2), q is the insurance
premium for each unit of this contract. Let µ be the amount of insurance contract purchased by type
2. Both p and µ are determined endogenously. The insurer, type zero, who is risk neutral has utility
only for good 3, and offers an insurance contract that is actuarially fair, i.e. q = ρ2s = 1/2, with
zero expected value (either due to competition or regulatory constraint). Type 2 agents maximize
their utility U2 subject to

p2x
2
12 + x2

13 = 2 − qµ, s = 1; p2x
2
22 + x2

23 = (1 − q)µ, s = 2,

obtaining

x2
12 = (4/5)(2 − qµ)/p2, x2

13 = (1/5)(2 − qµ), x2
22 = (4/5)(1 − q)µ/p2,

x2
23 = (1/5)(1 − q)µ.

With actuarially fair insurance q = 1/2, we obtain µ = 2 and the demand of type 2 household:

x2
12 = x2

22 = x2
2 = (4/5)(1/p2), x2

13 = x2
23 = x2

3 = 1/5,

Furthermore, one obtains

x1
1 = 4p2/5p1, x

1
2 = 1/5, x1

3 = 0, x3
1 = 1/5, x3

2 = 0, x3
3 = 4p1/5p3.

Since type 0 (insurer) has no need to trade, there is a unique price equilibrium p∗:

p∗
1 = p∗

2 = p∗
3 = 1.

The equilibrium consumption vectors are:

x1∗ = (4/5, 1/5, 0), x2∗ = (0, 4/5, 1/5), x3∗ = (1/5, 0, 4/5)

Note that the insurer collects one unit qµ = 1 of the numeraire good from type 2 households in
state 1 and gives one unit of the numeraire good to those who are in state 2. Once individual risk

is realized, it is clear that default occurs for some aggregate collective states
(
r > 1

2

)
when those

in bad state outnumber those in good state. There are more than one half of type 2 households
who are in the unfavorable state; such a default state is in Γ .

3.2. Default and recontracting

When default occurs, the actual insurance payments are assumed to be made proportionally to
what is owed. Because of limited liability, individuals have to recontract to reach a new equilibrium.
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We consider below the framework that at each default state d ∈ ∇, individuals recontract with
each other, so that new net trades and market clearing prices emerge at each default state. The
informational structure of the model is similar to that of the Arrow and Debreu model: privacy
is preserved in the sense that individuals know their own endowments and preferences but not
those of others. Let us understand how recontracting can reach a new equilibrium by the following
example.

Example 2 (Default Equilibrium with Recontracting). After the insurance contract is introduced
in the economy of Example 1, and over/under payment to the insured occurs, new state contingent
prices and allocations emerge. We compute these now.

The total number of aggregate states in the perfect foresight equilibrium is V + 1, one for
the no-default state and V default states with V = H/2 if H is even and V = (H + 1)/2 if H
is odd. In terms of the notation of the last section, ρ2s = 1/2 (s = 1, 2), vi

s = −1 if s = 1, and
vi
s = 1 if s = 2 and type i = 2. Note that r ∈ Γ (insurance default state) if r > 1/2. For r ∈ Γ ,

we demonstrate that p∗
r satisfies p∗

1 = p∗
2 = 2(1 − r), p∗

3 = 1. Furthermore, default is denoted by
δsr; δsr = 0 if s = 1, δsr = −1 + (1 − r)/r < 0 if s = 2.

Type 2 agents purchase full insurance as in Example 1. After the realization of individual state
(s = 1, 2) for type 2, there are 2H collective states and A = H + I aggregate collective states,
indexed by r = 0, . . . , 1, i.e. by the proportion of type 2 agents in the unfavorable state 2.

When r > 1/2, and s = 2, the adjusted payment with recontracting from the insurer is only
(1 − r)/r < 1 (due to the limited liability provision). This is a default state, r ∈ Γ . If s = 1, type 2’s
endowment is (0,0,1) for (1 − r)H of them; for the same case but when s = 2, type 2’s endowment
is (0, 0, (1 − r)/r) for rH of them. Given these endowments, type 2 agent’s maximize utility U2

and we derive type 2’s demand: (1 − r)H of type 2’s demand is x2
1 = 0, x2

2 = (4/5)(1/p2), x2
3 =

1/5, and excess demand is (0, 4/5p2, −4/5). A proportion rH of type 2’s demand is x2
1 = 0, x2

2 =
(4/5p2)(1 − r)/r, x2

3 = (1/5)(1 − r)/r, and excess demand is (0, (4/5p2)(1 − r)/r, (−4/5)(1 −
r)/r). Type 1’s excess demand is ((4p2/5p1), (−4/5), 0), and there is H of them. Type 3’s excess
demand is (−(4/5), 0, 4p1/5p3), for H of them.

Market clearing conditions are:

Good 1: (4p2/5p1)H − 4H/5 = 0, so p1 = p2.
Good 2: (1 − r)H(4/5p2) + (4H/5p2)(1 − r) − 4H/5 = 0, so p2 = 2(1 − r) < 1.
Good 3: (−4/5)(1 − r)H − (4/5)(1 − r)H + (4/5)p1H = 0, so p1 = 2(1 − r) < 1.

The recontracted equilibrium price vector becomes contingent on the aggregate collective state
with default (r > 1/2) is p∗

1 = p∗
2 = 2(1 − r), p3 = 1.

Equilibrium consumption vectors are

• x1 = (4/5, 1/5, 0) (same as in Example 1, not affected by default),
• x2 = (0, 4/10r, (1/5)(1 − r)/r) for rH of them (less consumption),
• and = (0, 4/10(1 − r), 1/5) for (1 − r)H of them (more consumption),
• x3 = (1/5, 0, (4/5)2(1 − r)) (less consumption).

Note that the market clears with recontracting: sum of all demand equals (H, H, 2(1 − r)H)
which is the total supply of commodities and x0 = (0, 0, 0) for the insurer.

Next we compute the equilibrium prices for aggregate collective state without default (r ≤ 1/2):
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Now type 0 receives (1 − r)H of good 3 and pays out rH only, so it has a surplus of (1 − 2r)H >

0 of good 3. Since by assumption, agent 0’s utility is a function of good 3 only, all the surplus
(1 − 2r)H is consumed directly in good 3, and this agent’s excess demand is the zero vector.

Market clearing conditions implies that: p∗
1 = p∗

2 = p∗
3 = 1 (prices stay constant).

Consumption vectors are

• x1 = (4/5, 1/5, 0),
• x2 = (0, 4/5, 1/5),
• x3 = (1/5, 0, 4/5), and
• x0 = (0, 0, (1 − 2r)H).

Note that markets clear: the sum of all demand vectors equals the total supply of commodities.
To see that E is complex we refer to the next section.

There are I insurance contracts or ALM assets, S-dimensional vectors of transfers (vi
s), one

such vector for each type of individual, i. Individuals anticipate correctly that there is default in
states d ∈ ∇, and also the extent of changes δi

sd in their insurance payments (in the numeraire
good) to the i-th type of household in individual state s for default states d. The value of their
consumption in such states does not exceed the value of their endowment plus the anticipated
(reduced) insurance payments received. Then an individual’s income is now contingent on the
aggregate collective state of the economy, r. Therefore there are A states (A is the cardinality of
the set RH ) in the economy. We now have NA markets with recontracting.

A price pA is now a vector in RNA. A consumption plan xi for household h of type i consists of
S × A consumption vectors in RN denoted xi

sr, one for each aggregate collective state r ∈ RH , and
individual state s. Recall that the insurance contracts provide transfers vi

s, which are exogenous
for the household with

∑
s ρisv

i
s = 0 in all no-default states. The data of the model, known to all

the households, include now the probabilities Πr of all aggregate collective states r ∈ RH , in
particular those of the default states d ∈ ∇, and also the shortfalls δi

sd < 0, s = l, . . . , S, on the
payment to the h household of type i at the aggregate collective state r. Note that with perfect
foresight, the ALM asset with payoff vector (vi

1, . . . , v
i
S), i = 1, . . . , I, ceases to be a statistical

asset and becomes a state contingent contract for the insured. This is because the insured is now
aware of the contingent payment vi

s + δi
sd in all the collective states r in which there is default,

r ∈ ∇.
In order to make explicit the asset structure of the model, we define the aggregate collective

states as follows:

r ∈ Γ (insurance default states) = {1, . . . , V }

and assume for simplicity in the exposition that there is one r without default,

r = 0 (the no default state)

so we can write r = 0, 1, . . . , V , or r ∈ {0, 1, . . . , V }. The corresponding price vector is pr, r =
0, . . . , V, pr ∈ RN . The two budget constraints can be written as one equation:

pr(x
i
sr − ei

sr) = δi
sr + vi

s, r = 0, 1, . . . V, s = 1, . . . , S, (7)
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where δi
s0 = 0, (i.e. when r = 0), xi

sr ∈ RN, ei
s ∈ RN, pr ∈ RN, δi

sr and vi
s are scalars. The oper-

ation “�” is defined in a standard fashion:

p�(xi
s − ei

s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

p0 · (xi
so − ei

s)

· · ·
pr · (xi

sr − ei
s)

· · ·
pV .(xi

sV − ei
s)

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

for a given s, where the right hand side of (8) is an (V + 1) × 1 matrix. Then Eq. (7) can be
written:

p�(xi
s − ei

s) = Xi
s =

⎡
⎢⎢⎢⎢⎢⎢⎣

vi
s + 0

· · ·
vi
s + δi

sr

· · ·
vi
s + δi

sV

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

for s = 1, . . . , S. Let Xi = [Xi
1, . . . , X

i
s, . . . , X

i
S], an (V + 1) × S matrix, then we can write (8)

more compactly as follows:

[p�(xi
1 − ei

1), . . . , p�(xi
s − ei

s), . . . , p�(xi
S − ei

S)] = Xi (10)

(both are (V + 1) × S matrices), where Xi is the payoff matrix of asset i:

Xi =

⎡
⎢⎢⎢⎢⎢⎢⎣

vi
1 · · · vi

S

· · · · · · · · ·
vi

1 + δi
11 · · · vi

S + δi
S1

· · · · · · · · ·
vi

1 + δi
1V · · · vi

S + δi
SV

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

Note that the asset structure of E has restricted access: although there are I insurance contracts,
as many as individual types, a household of type i can only purchase units of an insurance contract
of type i, i.e. a vector of transfers (vi

s) with
∑

s∈S ρisv
i
s = 0. The market is incomplete because

there are only I assets, while there are as many states as the cardinality of the set RH , namely A
(and A > I), see e.g. Hahn (1999).

3.3. Existence of a general equilibrium with default

The economy in our model has incomplete asset markets. Each asset has exogenously deter-
mined and fixed yields denominated in terms of the numeraire good. The economy has restricted
access, because each type of agent can only purchase one of the assets available in the economy
(i.e. the insurance contract of type i).

Definition 4. With H households of I types, a general equilibrium with default and recontracting
consists of a price vector pA∗ = (p∗

r ) ∈ RNA, consumption vectors xi∗ = (xi∗
sr) for each house-

hold h of type i with xi∗
sr ∈ RN representing consumption in the aggregate collective state r and

individual state s, a vector of shortfalls δi
sd < 0, and a vector y = (y∗

r ), y∗
r ∈ RN representing



510 G. Chichilnisky, H.-M. Wu / Journal of Mathematical Economics 42 (2006) 499–524

consumption by the insurer in aggregate collective state r, satisfying the following: the vector
xi∗ = (xi∗

sr) maximizes the utility function

Wi(xi) =
∑
r∈RH

Πr

S∑
s=1

risU
i
s(x

i
sr)

over the set of xi = (xi
sr) satisfying

p∗
r (xi

sr − ei
s) = vi

s, s = 1, . . . , S if r /∈ ∇, (12)

p∗
r (xi

sr − ei
s) = δi

sr + vi
s, s = 1, . . . , S if r ∈ ∇, (13)

and ∑
s

ρisv
i
s = 0. (14)

The vector y∗ = (y∗
r ) maximizes the insurer’s utility function

W(y) =
∑
r∈R

ΠrU(yr) (15)

over the set of y = (yr) satisfying

p∗
r (yr − e) =

∑
i,s

Hirisv
i
s if r /∈ ∇, (16)

and

p∗
r (yr − e) = c, c ≤ 0 if r ∈ ∇Γ. (17)

Finally, the market clears for each aggregate collective state r ∈ RH ,

∑
i

Hi

S∑
s=1

ris(y
∗i
sr − ei) + (y∗

r − e) = 0. (18)

Proposition 1 below offers the first result on the existence of a competitive equilibrium with default
in a world with individual and collective risks. (All proofs are in Appendix A.) As a preparatory
result we present the following:

Lemma 1. Walras Law is satisfied in the economy, i.e.

pr ·
∑
i=0

∑
s=1

Hiris(y
i
sr − ei

s) = 0 for r = 0, 1, . . . , V.

The Walras’s Law may not be satisfied in an economy without recontracting (see Section 3.1), but
it holds in the current framework with recontracting.

Proposition 1. Assume that the economy E satisfies A1 and A2, and that recontracting occurs
after default. There exists a general equilibrium with default and recontracting in the economy E
with incomplete markets.

The economy E is also denoted EH to indicate the number of its individuals. Note that the
condition of individual risk implies that as the number of individuals H goes to infinity, the
economy EH converges to a limiting economy denoted E∞, which is identical to the limit of the
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Malinvaud economies EM . Formally, limH→∞ EH = E∞ = EM , as discussed in Section 2 and
in the Appendix.

Alternatively, if the number of individuals H remains constant but we substitute the probability
distribution Π on R by the singular probability Π∞ = lim ΠH supported on the single aggregate
collective state r∞, we obtain an economy E∗ with the same finite number of individuals (H)
but with a unique aggregate collective state r∞ almost surely. Then ∀i, sρis = r∞

is . There is no
insurance default in E∗ and excess demand is identical to expected excess demand almost surely.
In per capita terms E∗ is identical to E∞. There is no collective risk in E∗ because there is only
one aggregate collective state r∞ almost surely; all individual risk is covered by the insurance
contracts (vi

s) which never default. E∗ behaves as E is expected to, but sometimes doesn’t. For
this reason E∗ is called a benchmark for E. It is straightforward to show the following result:

Lemma 2. The benchmark economy E∗ is a complete market economy with no default almost
surely.

4. Complex economies

The introduction of a statistical asset of the ALM type transforms individual risk into collective
risk of widespread default. In the examples we showed how the complex web of contractual
obligations amplifies individual default into collective default. Crucial to these examples is the
web of contractual obligations that the economy has in equilibrium, which magnifies individual
default. This section seeks to focus on the complexity of transactions, and it does so by introducing
a new concept that formalizes complexity. We aim to determine the extent to which there is a chain
reaction of defaults in an economy where the trade patterns are highly interlinked. The economy’s
complexity therefore determines the extent to which there is a “multiplier” effect for policies
designed to prevent financial default.

Example 3 (A Complex Economy with Collective Risk of Default). The economy E in Example 1
is “complex” as defined below in Definition 5. For each good there is only one type of household
who is a net importer and only one type of household who is a net exporter. For each aggregate
collective state r > 1/2, the insurer (type 0) collects one unit of the numeraire good from (1 − r)H
of type 2 households in good state and has to deliver to rH of type 2 household in bad state. With
limited liability, the insurer can deliver only (1 − r)/r < 1 unit of the numeraire good to those
households in bad state. This is the initial default started by the insurer with an “actuarially fair”
insurance contract, which is an example of the ALM asset as discussed in the previous sections.

Suppose that recontracting is not considered and the price is not yet adjusted from the equilib-
rium level without default: p1 = p2 = p3 = 1. Without default, the original contracts specify that
type 2 households deliver 4/5 units of good 3 and receive 4/5 units of good 2, type 1 households
deliver 4/5 units of good 2 and receive 4/5 units of good 1 and type 3 households deliver 4/5
units of good 1 and receive 4/5 units of good 3. The initial default by the insurer, for any r > 1/2,
generates a chain reaction of defaults. First, rH of type 2 households have to default from the

original contract as they can choose to deliver only 4
5

(
1−r
r

)
units of good 3 in exchange for

4
5

(
1−r
r

)
units of good 2.

The total purchase order for good 2 can be computed as 4
5

(
1−r
r

)
× rH + 4

5 × (1 − r)H =(
4
5H
)

× 2(1 − r) with 2(1 − r) < 1. These purchase orders are distributed proportionally to
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type 1 households, with each receiving 4
5 × 2(1 − r) units of purchase order. So all H of type 1

households obtain less income and have to default on their original promise of purchasing 4/5
units of good 1. Instead, each of them can purchase only 4

5 × 2(1 − r) units of good 1. Similarly,
type 3 households have to default and reduce their purchase of good 3.

In this economy default starts with a single agent(insurer) on an insurance contract and spreads
through a complex web of transactions to (2 + r)H households, whenever the aggregate collective
state is r with r > 1/2, r ∈ RH . The total amount of default for r > 1/2, as compared to a
benchmark economy without default, is equal to those default occurred for the promised delivering
of each good,

D(r) = 4

5
H(2r − 1) + 4

5
H(2r − 1) + 4

5
H(2r − 1) = 12

5
H(2r − 1).

The per capita default is equal to

d(r) = D(r)

3H
= 4

5
× (2r − 1),

and the expected amount of default is equal to∑
r∈Γ

ΠrD(r).

Our previous definition of a general equilibrium with default and recontracting allows the house-
holds to renegotiate new contracts to settle default, with the help of a set of new prices. In this
example, given r > 1/2, the new prices p1 = p2 = 2(1 − r) and p3 = 1 help to reach an equi-
librium with recontracting as in Definition 4.

As already noted, there exist aggregate collective states r in R where the insurer cannot meet
promised payments to individuals, namely when r ∈ Γ . In the (finite) perfect foresight economy
E, individuals take these defaults into account, and adjust their consumption in state r appropriately
(Section 3, Definition 4). In Section 3 we also defined a benchmark economy for the purpose of
comparing it with E, and measuring default and complexity. We consider default in a state r ∈ Γ

where the insurer fails to honor its payment vi
s to an individual h of type i in individual state s at

a collective state r, and examine how many other individuals default as a consequence.
Default therefore identifies the decrease in the value of a contract resulting from a failure in

payments by the insurer. The complexity of the economy measures how many other individuals
default in state r as a consequence of the default by the insurer on payments to individual of type
i. (see Example 1)

Definition 5. The economy E is said to have complexity k at a default state r, when there are k
defaults following any one default, at any equilibrium allocation of E.

Note that the concept of default considered here refers to contracts (net trades) for delivery to
the “market exchange” or to an “auctioneer”, as in the Arrow–Debreu market formulation. In other
words, no information is given here about who trades with whom or how much. Such information
is explicitly forbidden by the assumption of preserving privacy. In our context, default involves
simply an equilibrium net trade vector at a default state which differs from that contracted at a
no-default equilibrium.

The concept of complexity and the analysis of complex economies is useful for two reasons.
The first is for gauging the collective nature of the states of default in the economy E defined in
Section 3. For example, in an economy with complexity k ≥ H/2, a default state involves defaults
by a large number of individuals. The default states in E are always collective states, because they
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depend on the number of people in a bad state across the population. However, the collective
nature of these states is emphasized further when the complexity of the economy if high. In such
economies the states of default not only depend on a collective state (the number of people in a
given individual state) but also affect a large number of individuals as well. This is formalized in
Proposition 2.

Consider now an economy E with N goods, H individuals of I different types. There are S
individual states. Each individual of type i has an endowment ei

s and utility functions as in (2)
and W (Section 3, (15)). In addition, an S vector of transfers (vi

s) is available to each individual
of type i provided it has zero expected value. The economy can be described therefore as E =
(N, H, I, et

s, W
i, W). Insurance contracts do not appear in this parameterization, since they are

chosen as an optimal set of transfers (vi
s), s = 1, . . . , S, by the individuals of type i, among all

possible transfers of zero expected value. The space E of all such economies can be parameterized
by the endowments {ei

s} ∈ RNSI and by the utilities Wi, i = 1, . . . , I, and W, and endowed with the
product topology τ defined by the Euclidean metric on endowments and the Whitney C2 topology
on the space of C2 utility functions. The Whitney topology on the space of C2 functions Uh :
RN → R is defined by specifying neighborhoods of zero, since this is a linear space (Smale, 1974;
Peixoto, 1967). Such a neighborhood Mf is defined by each strictly positive continuous function
f : RN → R as follows: the function U ∈ Vf iff ‖U(x)‖ < f (x), ‖DU(x)‖ < f (x), ‖D(U(x))‖ <

f (x) for all x ∈ RN where DU and D2U are the first and second derivatives of U, and ‖.‖ is the
Euclidean norm in finite dimensional spaces. An open set of economies in the space E means an
open set in the topology τ, as endowments and utilities vary.

Proposition 2. Let N > H and k ≥ 2. There exists in E an open set of economies of complexity
k.

Proof. In the Appendix. �

Proposition 2 showed that there exists an open set of economies E with complexity k, for any
k ≥ 2. This establishes that in an open set of economies the states of default affect at least k

individuals. Therefore when k is large, the risk of default cannot be hedged properly by insurance.
The following corollary refers to small variations of the endowments of the economy, leaving

utilities invariant. The set of economies is now parameterized by its endowments and these are
endowed with any bounded measure which is positive on open sets. The corollary follows from
Propositions 1 and 2 and the fact that open sets have positive measure.

Corollary 1. Let N ≥ H , and k ≤ H . Then there exists a set of positive measure of Arrow–Debreu
economies which are k-complex, for any default level δ > 0.

5. Asymptotic risk and financial reserves

In this section we consider the asymptotic properties of our economy with default. We also
examine whether the default problem goes away once we incorporate “reserves” into the equation
to reduce such risks see Diamond and Dybvig (1983). This section considers this possibility and
shows that, while the risk of default can be reduced using reserves, it cannot be eliminated.

Consider now the economy E defined in Section 3, which we now shall denote also EH in
order to highlight the number of its individuals, H. In order to study the asymptotic properties of
this economy, we shall analyze a sequence of economies EH as the number of individuals tends
to infinity, i.e. H → ∞.
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Fig. 2. The probability measure ΠH .

In order to study the asymptotic behavior of economies where assets are valued in terms
of statistics, (i.e. ALM assets) we now need a few definitions. Recall that the set ∇H rep-
resents all states of default in the economy EH , and ΠH (∇H ) its measure, and that conver-
gence of probabilities means weak convergence (Billingsley, 1968). Consider an economic statis-
tic on an endogenous risk, such for example the expected value of total default of the econ-
omy EH , or the expected value of per-capital default of EH . Formally, an endogenous eco-
nomic statistic is defined as a continuous function from the space (FH × EH ) of all proba-
bility distributions on the space of collective states RH times the space of economies EH ,
into the real numbers, R, i.e. s(g, EH ) ∈ R. Notice that an endogenous economic statistic is
defined continuously for probability distributions and economies with a population of a fixed
size H.

Now consider as in Section 3 the product of the (S − 1)-dimensional unit simplex with it-
selfItimes, denoted ∆I . A point in ∆I represents a proportion of each type i = 1, . . . , I in each of
the S individual states. Then a probability measure ΠH on RH defines a measure on ∆I , supported
on a finite subset of ∆I , given say by a density function ΠH (r) for r ∈ RH , as represented in Fig. 2
above (see also Malinvaud, 1973).

The shaded area contains the support of the distribution over collective states in the finite
economy; the point inside it indicates the support of the limiting distribution which is a point
because of the assumption of individual risk.

As already mentioned, the assumption of individual risk in Section 3, implies limH→∞(ΠH ) =
Π∞, a degenerate measure on ∆I supported in one point only, denoted r∞. Note that even if the en-
dogenous economic statistic s(g, EH ) is a continuous function ofg ∈ FH for a fixed population size
H, convergence in measure of the probabilities ΠH need not imply that limH→∞ s(ΠH, EH ) =
s(Π∞, E∞), since the value of the endogenous statistic s depends on the behavior of the economy
EH as well as on the probabilities ΠH .

In the following, if {bn} is a sequence of real numbers we say that {bn} = O(ln H) if
limH→∞[bn/ ln H] = ∞. A class of economies is called robust when it is an open set in the
topology on the space of all economies defined in Section 4. If the class of economies has variable
population H = 1, 2, . . . , then we say that the class is robust when it is an open set under the
topology defined in Section 4 for each population size H.

The following Proposition 3 considers a class of economies of population size H and of
complexity H. Fig. 3 below illustrates such an economy. It consists of a number of traders
each of whom owns one good only, and derives utility from a different good. The econ-
omy has one importer and one exporter for each good. In this economy, default by one
trader leads to default by all traders, as shown in detail in Appendix A. Therefore this econ-
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Fig. 3. A complex economy, with population size H and complexity.

omy has maximum complexity. As H increases, the number of agents and of goods increases
with H:

Proposition 3. Consider a sequence of increasingly large and complex economies EH with a
population of H individuals facing individual risk, H → ∞ and satisfying ΠH (∇H ) = O(ln H).
Then the expected value of default increases with the size of the population H. The result is robust
as it holds for an open set of economies.

The following example shows a class of economies EH in which as the number of agents
increases and the number of goods remains constant or increases, the per capita endowment of
each agent need not increase, and every household in the economy is in default.

Example 4. There exists a robust class of economies in which autarky occurs in states of default,
for all population levels.

Consider an economy EH with Hi households of type i, i = 1, . . . , I, a total population of∑
i Hi = H . There are N ≥ 1 goods. One type, type 1, faces uncertainty: the households of

type i can be in one of two individual states S = {0, 1}. The unfavorable state is 1, and 0 is the
favorable state. The endowments of households of type 1 are (0, . . . , 0) ∈ RN in the unfavorable
state and (1, 0, . . . , 0) in the favorable state where the first good is the numeraire. Assume that
the distribution of risks over aggregate collective states for households of type 1 is given by a
probability distribution ΠH defined by ΠH (1, . . . , 1) = 1/(2 ln H); ΠH (1, . . . , 1, 0, . . . , 0) =
ΠH {1/2Hi in state 1 and 1/2Hi in state 0} = 1/(2 ln H); ΠH (0, . . . , 0) = 1 − (1/ ln H). For
all other aggregate collective states r, ΠH (r) = 0. The individual probabilities for households of
type 1 are ρ0 = 1/(4 ln H) + (1 − 1 ln H) = (4 ln H − 3)/(4 ln H), and ρ1 = 1/(2 ln H) +
1/(4 ln H) = 3/(4 ln H), so that ρ0 + ρ1 = 1. Then the probabilities ΠH → Π∞ weakly, where
Π∞ is the probability measure which assigns measure 1 to the aggregate collective state r∞ where
everyone of type i is in the favorable state s = 0, i.e. r∞

is = 1 if s = 0, r∞
is = 0 if s = 1(i = 1).

Therefore the conditions for individual risk are satisfied.
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Individuals of type 1 purchase actuarially fair insurance to equate consumption in the two
states: they contract to pay a premium ρ1 in state 0 and receive a payment ρ0 in state 1. For any
finite H, there is one aggregate collective state of insurance default, denoted rH , which occurs
with probability 1/(2 ln H) : when all households of type 1 are in state 1. The probability of rH
goes to 0 with H. Assume now that the economy EH is complex, as in the example of Section 3
and as illustrated in Fig. 3; it has a unique equilibrium in which there is one type which is a net
importer of each good, and one type which is a net exporter of each good. At the equilibrium
prices of EH all the households of type 1 have zero endowments and trade nothing in the default
state; by construction, no one else will trade in this state either, leading to autarky. Therefore as
H increases, the economy is always in autarky in the default state rH . This example is robust for
small changes in initial endowments and preferences, since the net trades at equilibrium are a
continuous function of endowments and preferences in the chosen topology.

We may assume that the excess (positive) returns on insurance premium over payments are
saved as “reserves”, and used to cover the (negative) shortfalls in the unfavorable collective states.
A natural question is whether default may be avoided by requiring that the agents hold their positive
profits from favorable collective states in financial reserves and use these reserves to satisfy claims
in unfavorable collective states. However, unless reserves which equal the maximum exposure
are required, the problem of default emerges all the same and leads to the same consequences.
The only difference is in the probability of default which is typically decreased. This provides
support to policies requiring some forms of reserves in the insurance and banking industry and
in financial markets, which can enhance the financial stability of the economy. We show that
requiring reserves reduces the problem of default.

Proposition 4. Increasing financial reserve will reduce the probability of default in any economy,
but a positive probability of default still remains.

6. Conclusion

We have analyzed the effect of introducing ALM assets in a large but finite in complete
market economy. Examples of ALM assets are actuarially fair insurance contracts, or shares in
a firm which maximizes expected profits. States of default emerge because ALM assets promise
deliveries that sometimes exceed physical endowments.

Proposition 1 proved the existence of an equilibrium with recontracting and endogenous un-
certainty of default. The new states of default in E are collective states because they depend on
collective events, such as the proportion of the population in each individual state. We showed
that in complex economies many individuals default at once at each state of default, emphasizing
the collective nature of default.

Proposition 2 shows that there is an open set of complex economies of complexity k, for any
k ≥ 2. In such economies default by one individual leads to default by k individuals, due to the
complex pattern of trading.

The introduction of ALM assets to hedge against individual risk therefore may increase col-
lective risk of default.

We studied expected default as the population size increases without bounds. At the limit, and
only at the limit, the economies have no default. This is because the distribution of risks across
the population converges with certainty to a known one.

Although the introduction of new assets, such as health insurance policies, may enhance the
welfare of individuals, our results illustrate a familiar concern about financial innovation. The
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concern is that the introduction of new financial assets could in some circumstances lead to more
instability, namely to new states of collective default. The results we presented formalize this
concern. They offer a way to measure the benefits of financial innovation, as well as its drawbacks.

The key is to understand the two circumstances under which collective risk increases with intro-
duction of new financial assets. These circumstances are: the assets are ALM, and the economies
are complex. The first feature of the problem, that the assets be ALM, is almost inevitable in large
economies with individual risk, because of the difficulty of creating assets that depend on long
list of individual characteristics, most of which are difficult to observe. So this first condition
cannot be avoided. The second feature refers to the complexity of the economy. The introduction
of an asset typically increases the web of trading in an economy and thus its complexity. Cer-
tain assets increase the collective risk of default more than others. They create “correlated” risks
which cannot be properly insured. The computation of the collective risk of default and the total
expected default from different assets, as defined in Section 5, could help to determine the extent
of collective risk introduced by the asset.

An interesting area of research would include the computation of the costs and benefits from the
introduction of new securities. The benefits can be measured in terms of Pareto improvements in
welfare, and the costs could be measured in terms of the increase is collective risks and complexity
of the economy, which make it more vulnerable to financial instability.

The other implication of our results is that they help to formalize a “multiplier effect” for policy.
In a complex economy, financial policies which succeed in preventing default by one agent also
prevent, by a chain reaction, a large number of other defaults at no additional cost. Therefore the
benefits have a “multiplier effect”. Our results provide support for the policy of requiring reserves
to enhance financial stability.

The complexity of the economy is not a problem in itself, unless it leads to large correlated
risks. However, if following the introduction of an ALM asset a second layer of securities is
introduced to deal with the endogenous risk created by the first, and the latter securities are also
of the ALM type, then the process is replicated. More endogenous uncertainty may be created,
piling up the risk of default of an asset which was introduced to hedge against the risk of default
of another a never-ending process. The results therefore suggest that large and complex market
economies with individual and collective risks are likely to be incomplete.

Appendix A

A.1. Extending Malinvaud’s model of individual risks

In this paper we extend Malinvaud’s model to include several types of agents, identified by
their endowments, utilities, and probabilities. One example of Malinvaud’s model is provided by
identically distributed and independent (iid) random variables. With iid’s there is no connection
between the individuals’ risks; furthermore, the probability of a collective state (e.g. how many
people are ill) is derived, indeed defined from, the probability of each individual’s risks. Instead,
Arrow–Debreu’s approach to uncertainty described by “states of nature” is an extreme case of
collective risk. In Arrow–Debreu models all risk is collective, and the probability distribution of
risks for one individual is derived from, indeed is identical to the distribution for collective risks,
because all individuals are exposed to the same risks simultaneously. However, between these two
extreme cases there are many shades of risks which combine in different ways features of both
individual and collective risks. They are represented by random variables which have individual
and collective components simultaneously.
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Individual risk has a specific meaning as defined in Section 2. Malinvaud (1973, p. 387)estab-
lishes that the probability that an aggregate collective state r obtains and that simultaneously, for
a given household h of type i, a particular state s also obtains is Π(r)ris. The probability ρis that,
for a given h of type i, a particular individual state s obtains is therefore given by

ρis =
∑
r∈RH

Π(r)ris.

A.1.1. The Arrow–Debreu model with contingent contracts and individual risks
Consider the set Ω of all collective states σ consisting of a realization of one of the S states for

each of the H households in the economy; Ω has SH elements. The endowments eh of a household
h is an NSH dimensional vector. For each household h of type i the endowment is the same across
all collective states in Ω in which h is at the same individual state s. A price vector p is an NSH

dimensional vector. An Arrow–Debreu equilibrium is a price vector p∗ and H consumption plans
x∗
h with NSH components each, such that if individual h is of type i, x∗

h maximizes Wi(xh) of (1)
subject to

p(xh − eh) = 0, (A.1)

and markets clear:

H∑
h=1

(x∗
h − eh) = 0. (A.2)

A.1.2. Extending Malinvaud’s model to economies with Arrow–Lind–Malinvaud assets
Malinvaud notes that with individual risks the number of contingent markets needed in the

(complete) Arrow–Debreu market is impossibly high, indeed equal to NSH (an exponential func-
tion of the number of individuals). He furthermore notes that as the population increases, then
in the limit all contracts contingent on collective states become irrelevant. This is because with
probability one, all collective states become equal, with probability one, to the single aggregate
collective state r∞ having a fixed proportion r∞

is of people of each type i in each individual state
s. Since the total initial endowments in the economy and total number of people with a given
preference are fixed, this leads to a fixed set of prices for the N commodities, p ∈ RN (Malinvaud
(1973), Proposition 5). For this reason, he suggests that, as the number of individuals goes to
infinity: “The economy should be able to work properly with just N markets, one market for
each good” (Malinvaud, 1973, p.401). This requires, however, that individuals should be able to
hedge appropriately their risk between bad and good individual states. For this purpose, Mal-
invaud introduces individual insurance: contingent commodities are substituted by an insurance
system operating as a redistribution scheme. Suppose that the individual of type i holds insurance
contracts that will give him or her the net transfer vi

s of the numeraire good if he or she is in state
s. Let now xi

s ∈ RN be the consumption vector by individual h of type i of the N goods in state s.
Then if p ∈ RN is the vector of commodity prices, the individual of type i has a budget constraint:

p(xi
s − ei

s) = vi
s, (s = 1, . . . , S) (A.3)

Risk coverage means that vi
s will be positive in unfavorable states and correspondingly negative

in favorable states. The individual chooses net transfers vi
s, depending on the terms on which such

insurance contracts are offered. Malinvaud assumes that a transfer vector vi
s is accessible to
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individual h of type i if and only if it is actuarially fair, i.e. its expected value is zero:

S∑
s=1

ρisv
i
s = 0 (A.4)

This is admittedly a strong assumption, but we note that nothing in what follows changes
if instead the expected value is equal to a constant ci > 0, where ci could be the return on
investment across the economy in equilibrium, or a regulated level of profits. This assumption
could be formalized as an equilibrium condition on the supply of insurance. Arrow and Lind
(1970) proposed that the expected profit should be the preferred maximum for public firms in
economies with individual risks, and indeed share holding in such firms would also be assets
valued as a function of their expected value. With these applications in mind, we consider more
generally any asset which is offered at a price which is a function of its expected value, and we
call this an Arrow–Lind–Malinvaud (ALM) asset. The introduction of such an asset has the effect
of modifying the right hand side of Eq. (A.4) leading to

S∑
s=1

ρisvis = ci. (A.5)

Extending Malinvaud’s equilibrium EM with insurance to economies with several types of
agents we define are equilibrium as a vector of prices p∗ ∈ RN , and for each household of type
i = 1, . . . , I, a consumption plan xi∗ = (xi∗

s )Ss=1 ∈ RNS which maximizes Wi, as defined in (3),
subject to (A.3) with the net trasfer vi

s satisfying (A.4), or equivalently

S∑
s=1

ρisp
∗(x∗

is − eis) = 0, (A.6)

and the expected total excess demand ξ(p) is zero :

ξ(p∗) =
∑

i

Hiξ
i(p∗) =

∑
i

Hi

S∑
s=1

ρis(x
i∗
s − ei

s) = 0. (A.7)

When the right hand side of Eq. (A.6) is substituted by ci as in (A.5), then we call this an
equilibrium with individual risk and Arrow–Lind–Malinvaud (ALM) assets. Related concepts of
equilibrium with zero expected excess demand have been studied by Hildenbrand (1971) and Wu
(1988).

A.1.3. An extension to markets with an infinite number of individuals of each type
Assume now that there are infinitely many individuals of each type i. Then by the assumption

of individual risk, ρis = r∞
is , where r∞ ∈ ∆I is the support of the limiting probability Π∞ namely

the (unique) limiting aggregate collective state giving a fixed proportion r∞
is is of individuals of

type i which are in individual state s. Per capita expected excess demand (1/H)ξ(p) is now used
instead of expected excess demand because the latter may not be a finite number in the limit, as
H → ∞. The equilibrium condition is now therefore written as

(1/H)ξ(p) = 0 (A.8)

almost surely as H → ∞.
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In the limit there is no default, since the proportion of people in an individual state s within
an aggregated collective state r is exactly r∞

is = ρis by the assumption of individual risk. This
limiting economy is denoted E∞

M . It is straightforward to show Pareto optimality of the allocations
in E∞

M .

A.1.4. The utility function of households
Here we summarize how to represent the utility functions in different forms, as in Section 3

of the paper. The von-Neuman and Morgenstern utility function can be written as:

Wi(xi
h) =

∑
σ

ΠσUi
s(h,σ)(x

i
hσ)

where xi
hσ ∈ RN+ , indicating that the h household of type i has preferences on consumption which

may be represented by a “state separated” utility function Wi defined from S elementary utility
functions Ui

s. The functions Ui
s are assumed to be C2, strictly increasing, strictly quasi concave,

and the closure of the indifference surfaces {(Ui
s)

−1(x)} ⊂ int(RN+) for all x ∈ RN+. We consider,
like Malinvaud (1973), an important class of cases in which the activity of the household h depends
on σ only through the aggregate collective state r(σ). If household h takes into account first what
happens to her or him, i.e. s = s(h, σ), and second which frequency distribution r(σ) happens
to appear, but nothing else, then the consumption plan xi

sσ = xi
s(h,σ)(r(σ)). The summation with

respect to collective states σ can now be made first with respect to each aggregate collective
state. To a particular r and s for which rs �= 0, there usually corresponds a number of σ leading
to r(σ) = r and s(h, σ) = s, hence to the same Ui

s(hσ)(x
i
hσ) = Ui

s(x
i
s(r)). Hence Wi may also be

written as

Wi(xi) =
∑
r∈RH

Π(r)
S∑

s=1

risU
i
s(x

i
s(r)),

which depends on the type i but not on the household h. But if we make the further assumption
that the household h only takes into account what happens to him/her, then the utility function of
the ith type of household in (1) can be rewritten as

Wi(xi) =
S∑

s=1

risU
i
s(x

i
s)

where xi
s ∈ RN+ is the consumption of a household of type i in individual state s Malinvaud

(1973, p. 390, (12)). Clearly xhσ = xi
s if individual h is of type i, and is in individual state s at the

collective state σ.

A.2. Proof of results

Proof of Proposition 1. The first part of the proof of Proposition 1 consists of verifying that Walras
Law is satisfied in the model of Theorem 1; it suffices to prove this for the case where the penalty
for the insurer c = 0; the same proof follows for any given c ≤ 0. We will first prove Lemma 1.

Let ∆r = {pr ∈ RN :
∑N

n=1 prn = 1} be the price simplex for the aggregate collective state
r = 0, . . . , V . After we find the equilibrium price p∗

r ∈ ∆r with p∗
rn > 0, we can renormalize

to make p∗
N = 1 for the numeraire good. Let the price simplex be denoted ∆ = ∆0x . . . x∆V =
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XV
r=0∆r. In the aggregate collective state r, the total insurance payments to all individual agents

of type i = 1, . . . , I is

Tr =
∑
i=1

∑
s=1

Hirisv
i
s, r = 0, 1, . . . , V. (A.9)

where ris is the proportion of type i agents in state s given the aggregate collective state r. If
ris = ρis for i = 1, . . . , I and s = 1, . . . , S, then we know that Tr = 0 from

∑S
s=1 ρisv

i
s = 0

(actuarially fair insurance). Otherwise Tr �= 0. If Tr ≤ 0 there is no default and the insurer (i = 0)
has net income −T0 to be spent on consumption goods in state r = 0. If Tr > 0, the insurer has
to default and consume nothing (the insurer has zero endowment, e0 = 0) with the provision of
limited liability which corresponds to the default state r = 1, . . . , V . The shortfalls δi

sr are chosen
then to satisfy the provision of limited liability:∑

i=1

∑
s=1

Hiris(v
i
s + δi

sr) = 0 for r = 1, . . . , V, (A.10)

If vi
s ≤ 0, then δi

sr = 0. (A.11)

If vi
s > 0, then δi

sr ≤ 0 and vi
s + δi

sr ≥ 0. (A.12)

Eq. (A.11) means that there is no shortfall when the insurer does not pay in state s. Eq. (A.12)
means that shortfalls happen only when the insurer is supposed to pay according to the actuarially
fair insurance contract, and the shortfalls cannot exceed the originally promised payment. Now
we can state and prove the Walras’ Law in our economy.

For r = 0, and i = 1, . . . , I, pr(yi
sr − ei

s) = vi
s, from the budget constraint and δi

sr = 0. For
r = 0 and i = 0 (insurer), pr(y0

r − e0) = pryr = −T0. Hence pr

∑I
i=0
∑S

s=l Hiris(yi
sr − ei

s) =∑I
i=1
∑S

s=1 Hirisv
i
s − T0 = 0 from (18) and H0 = 1, ros = 1. For r = 1, . . . , V , pr . (yi

sr − ei
s) =

vi
s + δi

sr from the budget constraint. Summing over i and s we have

pr ·
I∑

i=0

S∑
s=1

Hiris(y
i
sr − ei

s) =
I∑

i=1

S∑
s=1

Hiris(v
i
s + δi

sr) = 0

from (A.10), for r = 1, . . . , V . Hence Lemma 1 is proved. �
Since Wi(yi) is additively separable across r and s, an equilibrium can be represented as a pair

(p, y) with p = (pr), r = 0, . . . , V , pr ∈ ∆r, and y ∈ RINS(V+1), such that:

y = (yi
sr), (A.13)

yi
sr is in the demand correspondence Di

sr(pr) = {yi
sr ∈ RN : yi

sr maximizesUi(yi
sr)within

Bi
sr(pr)}, where

Bi
sr(p) (A.14)

is the budget set {yi
sr ∈ RN : pr(yi

sr − ei
s) = vi

s + δi
sr} for s = 1, . . . , S, r = 0, . . . V , and markets

clear:

0 ∈ Φr(pr) (A.15)

the excess demand correspondence
∑I

i=0
∑S

i=1 Hiris(Di
sr(pr) − {ei

s}) for r = 0, . . . , V.
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For each r the budget set Bi
sr(pr) defines a non empty, compact, convex valued and contin-

uous correspondence, so that Φr(pr) is a non empty, convex-valued and upper hemi-continuous
correspondence (Berge’s theorem). Furthermore, the excess demand correspondence Φr satis-
fies Walras’ Law for each r (Lemma 1), and the boundary condition of Debreu (1982, p. 722).
Therefore all the conditions of Theorem 8 of Debreu (1982, p. 722) are satisfied and there exists
a p∗

r such that 0 ∈ Φr(p∗
r ). The vector p∗ = (p∗

r ) and the corresponding allocation y∗(p) is an
equilibrium, completing the proof. �

Proof of Proposition 2. This proof has two steps: in the first step we construct an example of
a complex economy, E. In the second step we show that small variations of endowments and
utilities from those of E will remain within the class of complex economies. This latter step uses
Smale (1974) results which establish that for a generic (open and dense) set of economies, the
equilibrium allocations and prices depend locally continuously on the initial endowments and
preferences. We construct a complex economy in steps.

Formally, let (xi∗
sr) denote an equilibrium allocation in E of an individual h of type i in individual

state s at a collective state r. If its m-component (xi∗
sr − ei

s)m is negative, we say that h is a net
importer of m, or simply an importer of m, at this equilibrium. The same definition with the
opposite sign applies to exporters of a good m. Similarly in E∗ individual h of type i is a net
exporter of a good m at the equilibrium allocation (xi∗), when (xi∗

s − ei
s)m > 0, where xi∗

s is an
equilibrium allocation for E∗. Let r be a default state of the economy E as defined in Section 3,
and for s, r let h be an importer of good m at an equilibrium allocation of E, (zi∗

sr). Consider an
equilibrium (p∗, xi∗

s ) of E∗, and an equilibrium allocation (xi∗
sr) of E in a state of insurance default

r ∈ Γ.

An importer h of good m in economy E is said to default at s, r when the value of h′s net
purchases of good m at the default state r ∈ Γ is lower than what h contracted to purchase at the
individual state s in E∗, i.e. |p∗

m(xi∗
sr(m) − ei

s(m))| < |p∗
m(xi∗

s (m) − ei
s(m))|. A similar definition

holds for exporters. Note that the values are given by the equilibrium price p∗ of the benchmark
economy E∗.

First consider the case N = H . Let E0 be an economy with N goods, H households, and
equilibrium prices p∗, where at the equilibrium allocation corresponding to p∗, household 1 is
the only net exporter of good 1, and the only net importer of good 2; household 2 is the only
net exporter of good 2 and the only net importer of good 3, etc., finally household H is the only
net exporter of good N, and the only net importer of good 1. Note that E0 is complex, for any
default of any amount initiated by any of the households in any commodity n = 1, . . . , H . The
argument is now extended to N = H + b, b ≤ H . It suffices to modify E0 as follows. Assume
that household 1 is the only net exporter of goods 1 and H + l, and the only net importer of goods
2 and H + 2; household 2 is the only net exporter of goods 2 and H + 2, etc., household b is
the only net exporter of goods b and H + b and the only net importer of goods b + l and 1; and
finally household H is the only exporter of good H and importer of good H + l. The economy
E1 thus defined is clearly complex. Finally consider the general case of an economy E, where
N = aH + b, b < N, for some a ≥ 0. Define i mod H as the set of all natural numbers n > H

such that i is the remainder from dividing n into H, i.e. such that i satisfies n = aH + i, for some
a > 0. Then define the economy E so that household 1 is the only net importer of all goods 1
mod H and the only net exporter of all goods 2 mod H; household 2 is the only net exporter of all
goods 2 mod H and importer of all goods 3 mod H, etc.; finally H is the only net exporter of all
goods 0 mod H and net importer of all goods 1 mod H. E is clearly complex, see Fig. 3.
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In the complex economy E. Household 1 is the only net importer of all goods 1 mod H, and
the only net exporter of all goods 2 mod H. There are H households and N goods, N ≥ H .

Such an economy E arises by assigning to household i an endowment consisting exclusively of
goods i mod H, a utility function with no utility for good i mod H, and the sum of Cobb–Douglas
utilities for goods i + l mod H. Example 1 in Section 3 illustrates such an economy. Finally note
that the complexity of E survives small variations in net trades at the equilibrium. To see that the
economy remains complex for small variations in net trades consider the following modification
of the economy E. Consider first the case N = H . Assume that p∗ = (1, . . . , 1)—this can always
be assumed without loss of generality by changing the commodities’ units of measurement. Now
consumer 1 is no longer the only net importer of good 1, but the main one: consumer 1 is a net
importer of one unit of good 1 (in terms of the numeraire), while all other consumers together
import less than E at the equilibrium, E < 1/2H . Similarly consumer 1 is a net exporter of one
unit of good 2, while all other consumers together export less than 1/2H of good 2, etc., until
consumer H who is a net importer of 1 unit of good 1, while the rest of all consumers import at most
1/2H units of good H; and finally H exports one unit of good 1, while all other consumers together
export at most 1/2H units of good 1. Then any default of at least one unit of good n, n = 1, . . . , H ,
leads to default by all H individuals. A small enough modification of endowments and preferences
of produces another complex economy. The same argument can be employed to show that for
small variations of endowments and utilities the economy E with N = aH + b, a > 0, b < H ,
remains complex. Therefore, E may be modified so as to be within Smale (1974) open and sense
class of economies in which net trades vary (locally) continuously with initial endowments and
utilities, and remain complex. Any further small modification will still remain within the class of
complex economies, proving that there exists an open class of complex economies.

To prove that k-complexity is an open property when N > H , construct an economy E where
k individuals replicate economy E0 of Theorem 1, for k goods. Assume all other individuals have
zero net trades at the equilibrium p∗. Then default can only be initiated by one of k individuals,
and leads to k − 1 other defaults. This example is open since for any level of default δ > 0, we
can modify the original economy so that the net trades of the households h = k + 1, . . . , H add
up to less than δ. �

Proof of Proposition 3. This follows from Proposition 1 and the results of Section 3. In complex
economies such as E0 in Proposition 1, default always increases at least as a linear function of
the population H, while the definition of individual risk is consistent with an arbitrary rate of
convergence of the probabilities ΠH as H → ∞, as it requires only weak convergence of the
probability measures ΠH → Π∞, (see e.g. Malinvaud (1973), p. 387, para 4.) �
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