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ABSTRACT. This paper analyses decision under uncertainty, motivated
by problems emerging from global environmental risks. These are typically low
probability events with major irreversible consequences. For such risks the Von
Neumann Morgenstern Axioms for decision making under uncertainty are not
appropriate, since they are insensitive to low probability events. The paper in-
troduces an alternative set of axioms requiring sensitivity to both low and large
probability events. Through a representation theorem in functional analysis,
the results characterize all the operators whose maximization leads to the ful-
fillment of these axioms. They involve a convex combination of expected utility
and a criterion based on the desire to avoid a low probability, and potentially
catastrophic, events. It is shown that the new axioms help resolve the Allais
paradox. Open questions about risk aversion, games under uncertainty and cal-
culus of variations, are discussed.

1. INTRODUCTION

Global environmental risks such as climate change and rising sea levels are low prob-
ability events with widespread and possibly irreversible consequences. These are
fundamentally new risks which are not well understood. Learning through experi-
mentation is out of the question because these risks are effectively irreversible in a
timescale that matters. As a result, classic theories which rely on expected utility
may not work well because they underestimate low probability events, as discussed
below. The need to make global environmental decisions calls for a systematic analy-
sis of choices involving low probability events with major irreversible consequences.
The topic is of current importance but has been neglected in the literature of choice
under uncertainty.

This paper introduces a new decision making tool for such situations. Firstly,
it shows why the classic Von Neumann axioms do not work well in this context, as
they lead to expected utility that can be insensitive towards small probability events.
Secondly, the paper introduces and develops a new set of axioms requiring sensitivity
to both small and large probability events. These axioms appear to represent ways
in which people rationalize the problem of making decisions in situations involving
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catastrophic risks. The axioms are different from the classic axioms by Von Neu-
mann and Morgenstern, and lead to a different decision theory which is not based
on expected utility analysis. Finally, through a representation theorem, I show that
all the criteria implied by the new axioms have the following form: one term that
takes into account the maximization of expected utility, plus a second term which is
a well defined operator that can be interpreted as a desire to avoid a catastrophe.
Both parts are present, and both turn out to be important in making decisions under
catastrophic risks. The paper provides practical examples of how to use these criteria.
It shows how the new axioms help explain the Allais paradox, which involves choices
with low probability events, and suggests new questions on game theory and on the
calculus of variations.

2. VON NEUMANN MORGENSTERN AXIOMS
A set of mathematical axioms introduced half a century ago by John Von Neumann
and Oscar Morgenstern gave rise to a now classical tool for decision making under
uncertainty. Several other mathematicians and economists, such as Hernstein, Milnor
and Arrow, developed related axioms, [7]. The axioms formalize the properties of
orders defined on sets of uncertain events; the orders are then used to rank or evaluate
risky outcomes. The structure of the decision problem is simple. A system with
uncertain characteristics is in one of several possible states; each state is the value of a
random variable which describes the system. For example: the average temperature of
the planet’s surface is a state. The system’s states can be described by real numbers.

To each state s € R there is an associated outcome, for example to each tem-
perature level there is an associated vector describing soil fertility and precipitation.
Therefore one has z(s) € RY, N > 1. A description of outcomes across all states is
called a “lottery”. A lottery is a function z : R — R", and the space of all lotteries
is therefore a function space L.

The Von Neumann-Morgenstern (NM) axioms provide a mathematical formal-
ization of how to rank or order lotteries, i.e. of what are reasonable ways to order
the elements of L. Optimization according to such an order defines decision making
under uncertainty.

A main result obtained from the NM axioms is a representation theorem: a
characterization of all the functionals on L which satisfy the NM axioms. Maximizing
such a functional W : L — R over a constrained set given by initial conditions, defines
rational choice under uncertainty. Von Neumann Morgenstern proved that an order
over lotteries which satisfles their axioms admits a representation by an integral
operator W : L — R, which has as a kernel a countably additive measure over the
set of states. Such operators are called “Von Neumann Morgenstern (NM) utilities”
and the decision procedure obtained by optimizing such utilities is called “expected
utility maximization”, so that:
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Wiz) = | ula(s)du(s )

where the real line R is the state space, the function z : R — R is a “lottery”.
u: RY — Ris a “utility function” describing the utility provided by the outcome of
the lottery in each state s, u(s), and du(z) is a countably additive measure defining
a probability distribution over measurable subsets of states in R. It is standard to
require that the utility function is bounded to avoid the St. Petesburg paradox, see
Chapter 3 of Arrow [2]. According to the NM representation theorem, rational choice
under uncertainty which satisfies the NM axioms, must take the following form: a
lottery x is ranked above another y if and only if W assigns to z a larger real number.
In symbols:
-y W) > Wy,

where W satisfies (1).

The optimization of expected utility is a widely used procedure for evaluating
choices under uncertainty. Mathematically, functionals such as W are convenient
because they are amenable to a large body of knowledge which goes back several
centuries: the calculus of variations. The Euler Lagrange equations are typically
used to characterize optimal solutions. Such mathematical tools are widely used and
very valuable to find and describe choices under uncertainty.

3. CATASTROPHIC RISKS

A catastrophic risk is a low probability event which can lead to major and typically
irreversible losses. As already mentioned, global environmental problems have these
characteristics. The classic methods defined above, despite their widespread use, are
not satisfactory for evaluating catastrophic risks. The reasons are both practical
and theoretical. From the practical point of view, it has been shown that using
such criteria undervalues catastrophic risks and hence conflicts with the observed
evidence of how humans evaluate such risks. For example using NM utilities, the most
damaging scenarios of global climate change induce little if any economic loss. The
Intergovernmental Panel on Climate Change (IPCC), the main international scientific
organization in this area, recently predicted a highly contested figure of about 2%
loss of economic value from a doubling of CO4 concentration in the atmosphere. This
is a symptom of a more general phenomenon: a simple computation shows that the
hypothetical disappearance of all irrigation water in the USA and all the country’s
agricultural produce would have at most a 2 1/2 % impact on its Gross Domestic
Product. This finding underscores the importance of using appropriate criteria for
evaluating catastrophic risks.

Mathematically the problem arises from the fact that the expected utility operator
W which emerges from the NM representation theorem (1) is defined with respect to
a probability measure p, which is therefore countably additive. Since the “utility”
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function u : RY — R is bounded (i.e.sup,cp | u(z) |< 00), the countable additivity
of u can be shown to imply that any two lotteries z,y € L are ranked by W quite
independently of the utility of the outcome in states whose probabilities are lower
than some threshold level € > 0, where ¢ depends on = and y. To show this formally.
introduce the following definition:

Definition 1. A functional W:L — R is called “insensitive to small probability
events” when
Wi(z)>W(y) & 3>0:

w(z') > W(y') (2)
for all 2’y such that
r’=randy =yae on A°C R:u(4) <ec.

The interpretation of this definition is that W ranks z above y if and only if it ranks z’
above y’ for any pair of lotteries 2’ and 3’ which are obtained by modifying arbitrarily
z and y in sets of states A with probability lower than . Under these conditions one
says that the ranking defined by W is “insensitive” to the outcomes of the lottery
in small probability events. The following lemma shows that, as defined by NM, the
expected utility criterion W is not well suited for evaluating catastrophic risks. For
simplicity of notation. and without loss of generality, let ¥V = 1; the same results
hold for arbitrary V.

Lemma 2. Expected utility is insensitive to catastrophic risks.

Proof.  The expected utility criterion ranks lotteries in L as follows: z(s) >
y(s) & 3 a measurable and bounded utility function v : R — R, and a probability
measure p on R :

[ u(()dus) = [ uy(s)du(s)
R R

Now
/ w(z(s))du(s) »/ w(y(s))du(s) & 36> 0
R R
[ wle(©)duts) = [ uy(s)da(s) + 5
R R
Let
e =¢(z,y) =0/6K

where

K = Supgzer ser | u(z(s) | .
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If
' =zand y =y a.e. onS°
where
p(S) <e,

then

| [ wla(s)duts) - [ u((s)duts) |< 2K u(S) < 8/3.
and

| /Ru(y(s))du(s) - /Ru(y/(s))du(s) [<2Ku(S) <6/3.
Therefore

Ty = /Ru(a:’(s))du(s) > /Ru(y’(s))du(s) =1 -y
Reciprocally:

-y =z-y,
so that for e = §/6K
z=ye3>0:2 =y whenz=2"and y =y ae. onany S: u(S5% <e

and therefore by definition the expectd utility criterion is insensitive to small proba-
bility events. B

By the result just established, cost-benefit analysis under uncertainty based on ex-
pected utility maximization underestimates the outcomes of small probability events.
It is biased against certain environmental projects which are design to prevent catastrophic
events. Experimental evidence shows that humans treat choices under uncertainty
somewhat differently from what the Von-Neumann Morgenstern axioms would pre-
dict, and raises questions about the need for alternative axioms which describe more
accurately human’s valuations.

4. TUPDATING VON NEUMANN MORGENSTERN AXIOMS

Recently a new set of axioms has been developed which update Von Neumann Mor-
genstern Axioms to correct the bias pointed out in Section 3 against small probability
events. Chichilnisky [4] introduced a well-defined set of axioms which contrast with
Von-Neumann Morgenstern axioms, and produced the attendant representation the-
orems, identifying new types of functionals which are maximized under uncertainty.

These axioms paralell similar Yaxioms and criterion for choice over time introduced
in (5], [6].

'See also Machina {8] for an alternative analysis to Von Neumann Morgenstern treatment of
decision making under uncertainty. Machina does not provide an axiomatic treatment.
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5. NEw AXIoMms FOR CHOICE UNDER UNCERTAINTY
We propose three axioms for choice under uncertainty, which must be satisfied by
the criterion W : L — R used to evaluate lotteries. The first axiom is satisfied
by expected utility; the other two are not. The first axiom involves linearity and
continuity of the criterion with respect to the utility derived from lotteries, where
continuity is defined with respect to the sup norm on the space of utility values
associated with lotteries L. Formally. utility values of lotteries L are in the space of
measurable and essentially bounded functions on R , with the norm || u(x(s)) {[=

Supzerser | u(z(s) |

e Axiom 1: continuity of the functional W with respect to its argument. the
utility of the lottery u(z)?

e Axiom 2: Sensitivity to low probability events. This rules insensitivity to low
probability events as in Definition 2 above

e Axiom 3: Sensitivity to large probability events. This rules out insensitivity to
events of large probability, as defined below:

Definition 3. A ranking is said to be insensitive to large probability events when
Yx,y3e > 0,€e(x,y) such that

W(z) > W(y) & W) 2 W) (3)

for all lotteries x/.y’ such that ¢ = z’,y = ¥’ a.e. on S° where u(S) > 1 —¢. In
words: the ranking is the same on any two lotteries 2’ and y' that are obtained by
modifving arbitrarily = and y in any bounded set of states S C R, which may have
an arbitrarily large probability.

Example 4. As a example of a function which is insensitive to large probability
events. consider the space of all continuous linear real valued functions on Lee, the
“dual” of Lo, denoted L%,. Within this dual consider a “purely finitely additive
measure” v on R which assigns measure zero to any bounded set in R, i.e. v(S) =0
ifvr € S.| z |< K, for some K > 0. Such measures define functionals satisfving
(3). Such functionals are ruled out by axiom 3, which requires sensitivity to large
probability events. Indeed, such functionals put all the “weight” on infinity, i.e. on
events of arbitrarily small probabilities according to the countably additive measure
won R.

2Continuity is defined with respect to the sup norm on the space of utility values associated with
lotteries L. The space of utility values of lotteries L is the space of all measurable essentially bounded
functions on R . and the sup norm is defined as || u(z(s)) ||= Supzer.ser | u(z(s)) |-
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6. A REPRESENTATION THEOREM

Like the NM axioms, the three new axioms presented above lead to a representation
theorem establishing the form of every ranking of lotteries that satisfies the three
axioms given above. It has been shown in Chichilnisky 1992,% that there exist func-
tionals ¥ : Lo — R which rank all lotteries and satisfy all the axioms. Rather
than countably additive kernels, however, these functionals are a convex combina-
tion of integral operators with countably additive kernels and purely finitely additive
measures, with both elements (countably and finitely additive) non-zero.

Theorem 5. Any ranking > of lotteries in L = Lo.(R) satisfving the three axioms
defined must be of the form:

z=ys W) > Wy

where W : L — R

W(z) = Al /R w(z(s))du(s)] + (1 — N @(u(s(z)),

for A € (0,1), u: R — R, p a probability measure on R,

and® : L — R, ® &€ L"— L is a ‘purely finitely additive’ measure.

Proof.  The proof follows the line of argument presented in Chichilnisky ([6].
[5]). As defined above, the space of all utility functions derived from lotteries is
Loo(R) with the sup norm.By axiom one, we are looking for an element of the dual
space L% (R), the space of all continuous linear real valued functions on Lo(R). By
standard results in functional analysis, the dual space L% (R) consists of L1(R) as well
as another space consisting of “purely finitely additive” measures, namely continuous
linear functions that assign value zero to any function supported on a bounded set of
R. By axioms two, the function W is not contained in Ly, since in that case as shown
in Lemma 2, axiom two is violated. Axiom three implies that W is not a purely
finitely additive measure either; as shown in Chichilnisky ([6], [5]) the only possible
form is as represented above..

Example 6. As an illustration of the representation theorem presented above. con-
sider the case when the states are discrete, indexed by the integers Z. For each real
number u, 0 < p < 1, a continuous linear functional ¥ : I, — R can be defined as
follows:

(z) = u Y A u(z(s) + (1 = w) lim u(a(s). (4
s=1

30p. cit.
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where limsez u(z(s) is the (Hahn-Banach) extension of the continuous linear “lim-
it” operator to the space o of all bounded real valued functions on Z. The inter-
pretation of the two parts of the function ¥ in (4) is simple. The first part is an
integral operator with an integrable kernel {\7°};cz which defines a countably ad-
ditive measure on Z and therefore emphasizes the weight of large probability events
in the ranking of a lottery € lo. The second part defines a purely finitely additive
measure on Z which assigns positive weight to “small probability” events. It defines
a measure with “heavy tails”. Both parts are present, so U is sensitive to small and
large probability events. Catastrophic risks are therefore ranked more realistically
by such functionals. The mathematics involved in these representation results is non
linear analysis, as well as the analysis of convex systems. ‘

7. EXAMPLES AND OPEN QUESTIONS

7.1. Examples. Consider an electrical utility such as Con Edison in New York.
They seek to implement a production and service plan which would be optimal under
normal conditions, while at the same time avoiding a potentially catastrophic “black
out” incident which could be costly in monetary terms and in human lives. Following
our axioms and Theorem 5, a typical criterion that would be adopted would involve
choosing among all possible plans so as to maximize the expected throughput plus
minimizing the probability of reaching a critical level beyond which there would be
a ‘black out’. It can be shown that such a criterion would satisfy our three axioms.

7.2. The Allais Paradox. The first and perhaps most famous violation of the
standard models of choice under uncertainty is due to M. Allais, who showed exper-
imental evidence which is inconsistent with Von Neumann Morgenstern axioms. A
variation of this paradox was reported by Kahneman and Tversky. They observed
that 82% of the subjects chose a gamble A over another gamble B, and 83% of the
subjects chose a gamble C over another D, so that at least 65% chose B and C. How-
ever, as shown below, this pair of gambles B and C is inconsistent with Von Neumann
Morgenstern model of expected utility:

Example 7. Gamble A consists of a .33chance of winning $2500, .66 chance of win-
ning $2400, and .01 chance of winning $0, while Gamble B is 1. chance of winning
$2400. Gamble C consists of .33 chance of winning $2500, and .67 chance of winning
80, while gamble D consists of .34 chance of winning $2400 and .66 chance of winning
$0.

Observe that if an individual prefers B over A this means that their (sure) utility
function u over income satisfies

w(2400) > .33u(2500) + .66u(2400) + .01u(0)
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or
:34(2400) > .33u(2500) + .01u(0), (5)

the latter of which contradicts a choice in favor of C, because choosing C over D
implies
:33u(2500) + .67u(0) > .34u(2400) + .66u(0). (6)
One way to resolve this paradox is to understand that, when the new axioms are
taken into consideration, the individual’s utility function u has two components in
cases of small probability events: one of these components is expected utility. and the
other is focussed on the small probability event u(0). Therefore inequality (5) above
can be now written as: :

:34u(2400) > 33u(2500) + .01u(0) — 4,

for some real number # > 0. representing a higher weight given to the low (.01)
probability event of winning $0 than would be the case with expected utility. This
implies

-33u(2500) + .67u(0) — 6 < .34u(2400) + .66u(0).
which is no longer inconsistent with (6). With the new axioms, therefore, (3) no
longer contradicts (6) and the Allain paradox has been “resolved.”

7.3. Open Questions.

e Risk aversion is typically defined with respect to the utility function which
appears inside the expected utility functional (1). Here this definition may
not work, and an alternative definition may be needed. An interesting open
question how to define risk aversion for the functionals in (1), which satisfy our
axioms.

e Another question is how to define repeated game solutions (e.g. Nash equilib-
rium) that involve players with welfare functions of the forms identified here,
and to explore when these solutions exist.

e The traditional calculus of variation is based on integral operators that have
“finite” kernels, such as exponential weight functions of the form e—*S. This
specification no longer holds here, and therefore the optimization of the opera-
tors emerging from the new axioms require a new form of calculus of variation.
It is of interest that standard tools of calculus of variations must be redeveloped
in new directions. Some results already exist, e.g. Chichilnisky ([6], [5]), but
much work is still needed. The study of optimal solutions of these type of func-
tionals has led to asymptotically autonomous dynamical systems, which occur
naturally when one extends the Euler Lagrange analysis of optimal solutions
to encompass the type of operators defined here. Statistical analysis of such
systems also requires new tools.
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