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AesrRecr. This paper analyses decision under uncertaintv. motivated
by probiems emerging from giobal environmental risks. These are ty'pically low
probabii ity events with major irreversible consequences. For such risks the Von
Neumann llorgenstern Axioms for decision making under uncertainty are not
appropriate, since thelr are insensitive to low probabilitv events. The paper in-
troduces an aiternative set of a-xioms requiring sensitivity to both low and large
probability events. Through a representation theorem in functional analysis.
the resuits charactertze all the operators whose maximization leads to the fui-
fillment of these a-xioms. They involve a convex combination of expected utility
and a criterion based on the desire to avoid a low probabiiity, and potentially
^^'^^+'^^\ic. events. It is shown that the ner,v a-xioms help resolve the AllaisLd t  c ta  t , I  \ JP r l

paradox. Open questions about risk aversion. games under uncertaintv and cal-
culus of variations, are discussed.

l .  I tvrnooucrroN
Global environmental risks such as climate change and rising sea levels are low prob-
abiiity events with widespread and possibly irreversible consequences. These are
fundamentally new risks which are not well understood. Learning through experi-
mentation is out of the question because these risks are effectively irreversible in a
timescale that matters. As a resuit, ciassic theories which reiy on expected utility
may not work well because they underestimate low probabilit;z events. as discussed
beiow. The need to make giobal environmental decisions calls for a systematic analy-
sis of choices involving low probability events with major irreversible consequences.
The topic is of current importance but has been negiected in the literature of choice
under uncertainty.

This paper introduces a new decision making tooi for such situations. Firstly.
it shows why the classic Von Neumann axioms do not work weil in this context, as
they lead to expected utility that can be insensitive towards small probability events.
Secondly, the paper introduces and develops a new set of a-xi.oms requiring sensitivitv
to both small and large probability events. These axioms appear to represent ways
in which people rationalize the probiem of making decisions in situations involving
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catastrophic risks. The axioms are different from the classic axioms by Von Neu-
mann and Nlorgenstern, and lead to a different decision theory which is not based
on expected utiiity analysis. Finally, through a representation theorem. I show that
ail the criteria implied by the new a,xioms have the foilowing form: one term that
takes into account the ma;cimization of expected utiiity. plus a second term which is
a weil defined operator that can be interpreted as a desire to avoid a catastrophe.
Both parts are present, and both turn out to be important in making decisions under
catastrophic risks. The paper provides practical examples of how to use these criteria.
It shows how the new axioms help explain the Allais paradox, which involves choices
with low probabiiity events. and suggests new questions on game theory and on the
calculus of variations.

2. VoN Npuuaxx \zIoncENSTERN Axroivts

A set of mathematicai axioms introduced half a century ago bi' John Von Neumann
and Oscar \,Iorgenstern gave rise to a now classical tool for decision making under
uncertainty. Severai other mathematicians and economists, such as Hernstein. ivlilnor
and Arrow, developed reiated axioms,l7). The axioms formaltze the properties of
orders defined on sets of uncertain events; the orders are then used to rank or evaluate
risky outcomes. The structure of the decision problem is simple. A system with
uncertain characteristics is in one of severai possible states; each state is the vaiue of a
random variable which describes the system. For example: the average temperature of
the planet's surface is a state. The system's states can be described by reai numbers.

To each state s € R there is an associated outcome, for exampie to each tem-
perature level there is an associated vector describing soil fertii ity and precipitation.
Therefore one has r(s) € RN, l/ > 1. A description of outcomes across aii states is
cal led a " lottery". A lottery is a function r:R * RN, and the space of ai l  lotteries
is therefore a function space L.

The Von Neumann-Nzlorgenstern (NlvI) axioms provide a mathematical formal-
ization of how to rank or order lotteries, i.e. of what are reasonable ways to order
the eiements of tr. Optimization according to such an order defines decision making
under uncertainty.

A main result obtained from the NM axioms is a representation theorem: a
characterization of all the functionals on L which satisfy the NlvI a-xioms. Vlaximizing
such a functionalW : L * R over a constrained set given by initial conditions, defines
rational choice under uncertainty. Von Neumann Vlorgenstern proved that an order
over lotteries which satisfies their axioms admits a representation by an integral
operator W : L -* R, which has as a kernel a countably additive measure over the
set of states. Such operators are called "Von Neumann lvlorgenstern (NM) utilities"
and the decision procedure obtained by optimizing such utilities is cailed "expected
utiiity maximization", so that:
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( 1 )

where the reai l ine R is the state space, the function r :  E * RN is a " lottery".
u : RN --+ R is a ' 'utii ity function" describing the utiiity provided by the outcome of
the lottery in each state s, u(s), and dp(r) is a countabiy additive measure defining
a probability distribution over measurable subsets of states in R. It is standard to
require that the utiiity function is bounded to avoid the St. Petesburg paradox, see
Chapter 3 of Arro* [2]. According to the NlvI representation theorem. rational choice
under uncertainty which satisfies the NII a-xioms, must take the following form: a
iottery r is ranked above another y if and oniy \f W assigns to r a larger real number.
In symbols:

r > a + W ( r ) > l V ( y ) ,

where I,7 satisfies (f ).
The optimization of expected utility is a widely used procedure for evaluating

choices under uncertainty. Nlathematicaily. functionals such as W are convenient
because they are amenabie to a large body of knowiedge which goes back several
centuries: the calcuius of variations. The Euler Lagrange equations are typically
used to characterize optimai solutions. Such mathematical tools are widely used and
very vaiuable to find and describe choices under uncertainty.

3. C.q,ras'rnoPHIC Rtsxs

A catastrophic risk is a low probabiiity event which can lead to major and typically
irreversible losses. As already mentioned, globai environmental problems have these
characteristics. The classic methods defined above, despite their widespread use, are
not satisfactory for evaluating catastrophic risks. The reasons are both practical

and theoretical. From the practical point of view, it has been shown that using
such criteria undervalues catastrophic risks and hence conflicts with the observed

evidence of how humans evaluate such nsks. For example using NlvI utii ities, the most
damaging scenarios of giobal climate change induce little if any economic loss. The

Intergovernmentai Panei on Climate Change (IPCC), the main international scientific
organization in this area, recentiy predicted a highiy contested figure of. about 2To
loss of economic vaiue from a doubiing of CO2 concentration in the atmosphere. This
is a symptom of a more general phenomenon: a simple computation shows that the
hypothetical disappearance of all irrigation water in the USA and all the country's

agricuitural produce would have at most a 2 Ll2 % rmpact on its Gross Domestic
Product. This finding underscores the importance of using appropriate criteria for
evaluating catastrophic risks.

Mathematically the problem arises from the fact that the expected utility operator
W which emerges from the NM representation theorem (1) is defined with respect to
a probability measure p, which is therefore countabiy additive. Since the "utility"

w(r) :  
l , rou(r(s) )dp(r)
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function u: RN ---+ ft  is bounded ( i .e.supcen I "(") l< ".), ,  
the countable addit ivi t i '

of p. can be shown to imply that any two lotteries r, A e L are ranked by I,7 quite
independently of the utility of the outcome in states whose probabiiities are lower
than some threshold level 6 ) 0, where e depends on ,t and g. To show this formallv.
introduce the foilowine definition:

Definition 1. A functional W:L ----+

events" when
W ( r \  >

R is called ':rnsensitive to small orobabilitv

VV(y) <+ le ) 0 :

lV(r ' )  > W(a') rr)

for al l  x '  ,A' such that

7t  :  z  and a '  -  a  a.e.  on A"  c  R:  p, (A)  < e.

The interpretation of this definition is that I,7 ranks r above y if and only if it ranks r'
above y' f.or any pair of lotteries u' and y' which are obtained by modifying arbitrarily
r and y in sets of states A with probability iower than e . Under these conditions one
says that the ranking defined by W is "insensitive" to the outcomes of the lottery
in small probabiiity events. The following lemma shows that, as defined by NlvI, the
o'nor.fod rrfil if 'r; criterion W is not well suited for evaluating catastrophic risks. Forv - \ y 9 u v v g  u v r r r u J

simplicity of notation. and without loss of generality, let /V - 1; the same resuits
hold for arbitrary lV.

Lernrna 2. Exoected utilitv is insensitive to catastroohic risks.

P r o o f . T h e e x p e c t e d u t i 1 i t y c r i t e r i o n r a n k s 1 o t t e r i e s t n L a s f o l i o w s : r ( s ) >
y(s) <+ I a measurabie and bounded utility function u : R --. R, and a probability

measure p, on R :

z ( r  ( s ) )dp ( ' )
" ( y ( s ) ) d p ( ' ) .

Now

J R

I
I D

r
I

J t t

J R

I

I
J R

u( r  ( s ) )dp ( ' )

u ( r (s ) )dp ( ' )
"(s ' (s))dp(s) 

+ 6.

e -e ( r ,A ) : 616K

K - Sup,eL,r66 | z(r(s) |

,  
l ru(y(s)  )dp(r)  <+ :6 )  0 :

Let

where
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rt  :  r  and y '  -  A a.e.  on Sc

ir(^s) < e,

and

Therefore

Reciprocally:
t r ' > y ' + r l a ,

so that for e - 6l6K

r > A  e  l e  )  0 :  t r ' >  y ' w h e n ' r : t r t  a n d y  - A '  a . e .  o n  a n ) /  S : p r ( S ' )  <  e

and therefore by definition the expectd utility criterion is insensitive to smail proba-
bility events. I

By the result just estabiished, cost-benefit analysis under uncertainty based on ex-
nor.tod rrt i l i f rnnaximization underestimates the outcomes of small  probabil i ty events.
It is biased against certain environmental projects which are design to prevent catastrophic
events. Expertmental evidence shows that humans treat choices under uncertainty
somewhat differently from what the Von-Neumann Vlorgenstern axioms would pre-
dict, and raises questions about the need for alternative axioms which describe more
accurately human's valuations.

4. Upoarrxc VoN NruruaxN VIoncENSTERN Axiovrs

Recentiy a new set of axioms has been deveioped which update Von Neumann NIor-
genstern Axioms to correct the bias pointed out in Section 3 against smali probability

events. Chichiinisky [a] introduced a weil-defined set of axioms which contrast with

Von-Neumann Morgenstern axioms, and produced the attendant representation the-
orems, identifying new types of functionals which are maximized under uncertainty.
These axioms paralell similar Vaxioms and criterion for choice over time introduced
'  r - 1  r ^ l  Ir n  l D l ,  L b l . ^

lSee also \llachina [A] ior an alternative anaiysis to Von Neumann Morgenstern treatment of
decision making under uncertainty. Machina does not provide an axiomatic treatment.

tI
J R

tJ^

u(r (s ) )dp(s)  -  
l ^u( . r ' (s )  )dp( r )  l<  2K t  (s )  <  6 /3 ,

, (y (s)  )dp(s)  -  [  u@'(s) )dr r (s )  l<  2K p, (S)  <  613
J R

r  >  a  =  
|  ou ( r '  

( s ) )dp ( r ) ,  
|  ̂ u@'  

( r ) )dp (s )  +  r '  >  a '
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5. Npw Axtovts FoR CHoIcE UNDER UNCERTAINTY

We propose three axioms for choice und.er uncertainty, which must be satisfied by

the criterion W- : L - .R used to evaiuate iotteries. The first axiom is satisfied

by expected utility: the other two are not. The first axiom involves linearit;z and

continuity of the criterion with respect to the utility derived from lotteries. where

continuity is defined with respect to the sup norm on the space of util ity values

associated with lotteries .L. Formaily. utii ity values of iotteries tr are in the space of

measurabie and essential iy bounded functions on R, rvi th the norm l l  u(r(s)) 1l:

Sup ,e r . r .6  |  z ( r (s )  l .

. Axiom l: conrinuity of the functional I,i/ with respect to its argument. the

uti l i ty of the lottery u(x)2

. ^Lriom 2: Sensitivity to low probability events. This rules insensitivity to low

probability events as in Definition 2 above

. Axiom 3: Sensitivitv to large probabiiity events. This rules out insensitivity to

events of large probabiiity, as defined below:

Definition 3. A ranking is said to be insensjtive to )arge probability events rvhen

7r. y3e > 0. e (r ,  y) such that

vV (r) > vV (y) e W (r') U rV (a')

f o r a I i l o t t e r i e s ' , , y , s u c h t h a t r : r | , a : a , a ' e ' o n S . w h e r e / , ( s ) >
word.s: the ranking is the same on any two lotteries r' and y' that are obtained b-u"

modifying arbitrariiy z and y in any bounded set of states ,S C R, which may have

an arbitrariiy large probabiiity.

Example 4. As a example of a function which is jnsensitive to large probability

events. consider the space of all continuous /inear real valued functions on L*, the
,6'al" of Loo,, d.enoted LJ. Within this dual consider a "purely fi.niteL1r additive

measure" Lt on R which assigns measure zero to any bounded set in R, i.e. z(S) - 0

if ir € S. I x i< K, for some K > 0. Such measu-res define functionals satjsfy'ing

(S) Such functionals are ruled out by axiom 3, which requires sensjtivity to large

probability events. Ind.eed, such functionals put all the "weight" on infinity, i.e. on

events of arbitrarily small probabilities according to the countably additive measure

u o n R .

2Continuity is defined with respect to the sup norm on the space of utility values associated with

iotteries L. The space of utility values of lotteries .L is the space of ali measurable essentially bounded

funct ions on R,  and the sup norm is  def i .ned as l l  u ( r (s) )  l l=  Sup.eL,s€R lu(z(s) )  l .

(3 )
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6. A RBpnESENTATToN THEoREM

Like the NivI axioms, the three new a-xioms presented above lead to a representation
theorem establishing the form of every ranking of lotteries that satisfies the three
a-xioms given above. It has been shown in Chichilnisky 1992,3 that there exist func-
tionals \p : L,n -> E which rank all iotteries and satisfy all the a-xioms. Rather
than countably additive kerneis, however, these functionals are a convex combina-
tion of integral operators with countabiy additive kernels and purely finitely additive
measures. with both elements (countably and finitely additive) non-zero.

Theorem 5. Any ranking > of lotteries in L - L*(R) satis{ving the three a-xjoms
defrned must be of the form:

r>aeW( " )  >W(a )

where lV : L --+ R

I

w( r )  - ^ [  |  u ( r ( s ) )d r , ( ' ) ]  * ( 1  - ^ )a (u ( s ( r ) ) ,
J R

for ,\

and Q

(0, 1) , LL '. R -, R, pt a probabilitlr measure on R,

L --- R. Q € L* - L1 is a 'purely finitely additive' meast)re.

Proof. The proof follows the line of argument presented in Chichiinisky (16i.

i5]) As defined above, the space of all util ity functions derived from lotteries is
r ( P\ ' , , i rh the sup norm.By axiom one, we are looking for an element of the dualu o o \ t u  J  v Y  r u ^ r  u r r

space L\(R), the space of all continuous linear reai valued functions on L*(R) By
standard resuits in functional analysis. the dual space tL(n) consists of Lt (R) as rvell
as another space consisting of "pureiy finitely additive" measures. nameiy continuous
linear functions that assign vaiue zero to any function supported on a bounded set of

E. By axioms two, the function W is not contained in tr1, since in that case as shown

in Lemma 2, a;ciom two is violated. Axiom three impiies that lV rs not a purelv

finiteiy additive measure either; as shown in Chichilnisky ([6], [5]) the only possibie

form is as represented above..

Example 6. As an illustration of the representation theorem presented above. con-
sider the case when the states a.re discrete, indexed by the integers Z. For each real
number p,,0 < p. < L, a continuous linear functional V : l* --- R can be defined as
follows:

co

- 7 . /  r  S  r -V( r )  -  p>  A - "u ( r ( s ) )
^ -  1

J -  I

+ (1 -  t") ! :&u(z(s)) . ( 4 )

3Op .  c i t .
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where limra2 z(r(s) is the (Hahn-Banach) extension of the continuous linear "lim-
it" operator to the space l"o of all bounded real vaiued functions on Z. The inter-
pretation of the two parts of the function V in (a) is simple. The first part is an
integral operator with an integrable kernel {^-'}sez which defines a countably ad-
ditive measure on Z and therefore emphasizes the weight of large probabiiity events
in the ranking of a Iottery r €.loo. The second part defines a purei;r finiteiy additive
measure on Z which assigns positive weight to "smail probability" events. It defines
a measure with "heavy tails". Both parts are present, so W is sensitive to small and
Iarge probability events. Catastrophic risks are therefore ranked more realistically
by such functionals. The mathematics involved in these representation results is non
linear analysis. as weil as the analysis of convex systems.

7.  ExauplEs AND OpBx Qunsrrorus

7.I. Examples. Consider an electrical utii ity such as Con Edison in New York.
The;r seek to impiement a production and service plan which would be optimal under
normal conditions. while at the same time avoiding a potentially catastrophic "black
out" incident which could be costllr in monetary terms and in human lives. Following
our axioms and Theorem 5. a typicai criterion that would be adopted wouid involve
choosing among ail possible plans so as to ma-ximize the expected throughput plus
minimizing the probabiiity of reaching a critical levei beyond which there would be
a'black out ' .  I t  can be shown that such a cri terion wouid satisf,v our three axioms.

7.2. The Allais Paradox. The first and perhaps most famous violation of the
standard models of choice under uncertainty is due to VI. Allais. who showed exper-
imentai evidence which is inconsistent with Von Neumann Nlorgenstern axioms. A
variation of this paradox was reported by Kahneman and Tversky. They observed
that 82Yo of the subjects chose a gamble A over another gamble B. and 83% of the
subjects chose a gamble C over another D, so that at ieast 65% chose B and C. How-
ever. as shown below, this pair of gambies B and C is inconsistent r,vith Von Neumann
lvlorgenstern modei of expected utility:

Example 7. Gamble A consjsts of a .33chance of winning $2500, .66 chance of win-
ning $2400, and .01 chance of winning $0, while Gamble B js 1 . chance of winning
$2400. Gamble C consists of .33 chance of winning $2500, and.67 chance of winning

$0, whjle gamble D consists of .34 chance of winning82400 and .66 chance of winning
$0 .

Observe that if an individual prefers B over A, this means that their (sure) util ity
function u over income satisfies

uQa00) > .33u(2500) + .66u(2400) + .01u(0)
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or

34uQa00) > .33u(2500)  + .01u(0) ,  (5)

the iatter of which contradicts a choice in favor of C, because choosins C over D
implies

.33u(2500)  *  .672(0 )  >  .34u(2400)  + .66u(0 ) .  (6 )

One wav to resolve this paradox is to understand that, when the new axioms are
taken into consideration. the individual's util ity function u has two components in
cases of smali probability events: one of these components is expected utility. ancl the
other is focussed on the small probability event u(0). Therefore inequality (5) above
can be now r.vritten as:

3 a u Q a 0 0 )  > . 3 3 u ( 2 5 0 0 )  * . 0 l u ( 0 )  - d ,

for some real number 0
probabilitv event of winning $0 than wouid be the case with expected utility. This
implies

.33u(2500) = 67u(0) - 0 < Sauea}O) + .662(0).

which is no longer inconsistent with (6). With the new axioms. therefore, (5) no
longer contradicts (6) and the Allain paradox has been ,,resolved.."

7.3.  Open Quest ions.

. Risk aversion is typically defined with respect to the utility function which
appears inside the expected ut i l i ty functional (1). Here this definit ion mav
not work. and an aiternative definition may be needed. An interesting open
ntteqtinn how to define r isk aversion for the functionals in (1). which satisfu our
axioms.

. Another question is how to define repeated game solutions (e.g. Nash equilib-
ritrrn) thrl involve piayers with welfare functions of the forms identified here.
and to explore when these solutions exist.

' The traditional calculus of variation is based on integral operators that have
"fi.nite" kerneis, such as exponential weight functions of the form e-r'. This
specification no longer holds here, and therefore the optimization of the opera-
tors emerging from the new axioms require a new form of caicuius of variation.
It is of interest that standard toois of caiculus of variations must be redeveioped
in new direct ions. Some results already exist,  e.g. Chichi lnisky (16], [5]),  but
much work is stil i needed. The study of optimai soiutions of these type of func-
tionais has ied to asymptotically autonomous dynamical systems, which occur
n  n 1 " " - ^ l l - 'Ilarurally when one extends the Euler Lagrange anaiysis of optimal solutions
to encompass the type of operators defined here. Statistical analysis of such
systems also requires new tools.



An Axiomatic Approach to Choice under Uncertaintywith Catastrophic RiskslO

RpTBRnNCES

[1] NI. Aliais (1988) "The General Theory of Random Choices in Relation to the
Invariant Cardinal Utility Function and the Specific Probability Function " in
Ri,sk, Decis'ion, and Rationality (ed. by B.R. lvlunier), Dordrecht: Reidei: p.
233-289.

[2] K. Arrow Essays in the Theory of Risk Bear-r,ng, Amsterdam: North Holand.
797r.

t3] D. Cass, G. Chichiinisky and H. Wu "Individual Risks and llutual Insurance"
Econometnca (1996) 64. No. 2, 333-341.

[4] G. Chichiinisky (1996) "Updating Von Neumann ]Iorgenstern Axioms for Choice
Under Catastrophic Risks", Invited presentation. The Fields Institute for Nlath-
ematical Sciences, June 9-11, 1996, Workshop on Catastrophic Environmental
Risks. University of Toronto. Canada.

i5] G. Chichilnisky (1997) "What is Sustainable Deveiopment" Land Economics.
November 1997, 73 (4) p. 467-491.

f6] G. Chichilnisky "An Axiomatic Approach to Sustainable Development" Soc.
Choice and Welfare (1996) L3:32L-257.

[7] N. Hernstein and J. lvlilnor "An Axiomatic Approach to Vleasurable lJtii itv"
Econometrica ( 1953) 2I;29I-297

i8] \zI. Ilachina "Expected Utiiity Analysis without the Independent Axiom" Econo-
metrica ( 1982) 50:277 -323.

[9] Nf . Viachina "Dynamic Consistency and Non-Expected Utility Nlodeis of Choice
Under Uncertainty" Journal of Economic Literature. Voi. XXii December 1989,
p. 1622-1668.

[10] A. Tversky and P. Wakker "Risk Attitudes and Decision Weights" Econometrtca
Vol 63, No. 6, November 1995, p. L225-1280.


